Point-Set Topology: Midterm

Summer 2022
Problem 1 (Logic)

The truth table for a logical connective (such as =) that combines two propo-
sitions P and @ into a single proposition (like P = Q) is a table that exhausts
all possibilities of P and @ being true and false. The truth table for implication
is given in Tab. 1

P | Q |P=Q
False | False True
False | True True
True | False False
True | True True

Table 1: Truth Table for Implication

Prove the absorption laws. If P and @ are propositions, then P or (P and Q)
if and only if P. Using V and A this says:

PVv(PAQ)& P (1)
Also, P and (P or Q) if and only if P. That is:
PA(PVQ)& P (2)

1 Point) Construct the truth table for PV Q.

)

1 Point) Construct the truth table for P A Q.
)
)

(
(

¢ (1 Point) Construct the truth table for PV (P A Q).
(1 Point) Construct the truth table for P A (P V Q).
(

e (1 Point) Compare these with P to prove the absorption laws.
Prove that implication can be defined by negation (=) and logical or (V).
e (1 Point) Give the truth table for —P.
e (1 Point) Give the truth table for (-P) V Q.

e (1 Point) Compare this with implication P = Q.



Problem 2 (Set Theory)

Here you will construct the real numbers.

e (2 Points) Show that if A and B are sets, there is a set of all functions
f: A — B. [Hint: Functions are subsets f C Ax B with a special property.
Use the axiom of the power set and the axiom schema of specification to
construct the set of all functions from A to B.]

¢ (1 Point) Given the rational numbers Q with the standard metric d(z, y) =
|x — yl|, state the definition of a Cauchy sequence in Q.

e (2 Points) Let A be the set of all Cauchy sequences a : N — Q (This set
exists by part 1 of this problem). Define the relation R on A by aRb if
and only if |a, — b,| — 0. Prove R is an equivalence relation.

e (3 Points) Let R = A/R. Define + on R by [a] + [b] = [¢] where ¢: N — Q
is the sequence ¢, = a, + b,. Show that ¢ : N — Q is indeed a Cauchy
sequence and that + is well defined on R.



Problem 3 (Metric Spaces)

1 Point) State the definition of a metric space.

1 Point) State the definition of a convergent sequence.

(
(
e (1 Point) State the definition of a continuous function from a metric space
(X, dx) to a metric space (Y, dy).
(

3 Points) Prove that if (X, dx), (Y, dy), and (Z, dz) are metric spaces,
if f: X —->Yandg:Y — Z are continuous, then go f : X — Z is
continuous.

(1 Point) State the definition of a closed subset.

(3 Points) Prove that if D C Y is closed and f : X — Y is continuous,
then f~1[D] C X is closed.



Problem 4 (Compactness)

A uniformly continuous function from a metric space (X, dx) to a metric space
(Y, dy) is a function f : X — Y such that for all € > 0 there exists a § > 0
such that for all z,z9 € X, dx(x, zo) < & implies dy (f(z), f(z0)) < &. Using
cryptic notation, this says:

Ves03550Veex Vagex (dX(CC, z9) < 6= dy (f(z), f(zo)) < 5) (3)

Note, this is stronger than continuity. You proved in HW 1 that continuity is
equivalent to:

Ves0Voex Io>0Vapex (dX(CU7 z0) < 6 = dy (f(z), f(z0)) < 6) (4)

The definition of uniform continuity swaps the quantifiers. In continuity, given
an ¢ > 0 and an ¢ € X, you can find a § > 0 that may depend on ¢ and
z, 8 = 6(g, x), such that dx(z, z9) < & implies dy (f(z), f(zo)) < . With
uniform continuity you may find a § > 0 that works for all x € X, § only
depends on €, § = §(¢). The function f(z) = % defined on R is an example
of a function that is continuous but not uniformly continuous. Given ¢ > 0
and any z € RT you can indeed find a § > 0 such that |z — xo| < & implies
|% — %0| < &. But as x gets smaller and smaller, closer to 0, the value of § must
get smaller too. This shows there can be no fixed positive § > 0 that works for
all z € RT.

In the problem you will prove the Heine-Cantor theorem. If (X, dx) is a compact
metric space, if (Y, dy) is a metric space, and if f : X — Y is continuous, then
f is uniformly continuous.

e (2 Points) Let ¢ > 0. By continuity, for all + € X, there is a 6, > 0
such that zo € X and dx(z, o) < d, implies dy (f(m), f(a:o)) < e. Let
Uy = Béj(/’;X)(x) and O = {U, | x € X }. Show that O is an open cover
of X.

¢ (2 Points) We proved that (X, dx) is compact if and only if every open
cover O has a finite subcover A C O. Write A = {Uy,, ..., Uay }- Let
§ = imin(d,,, ..., 8ay). Show that if z,zg € X and dx(z, z¢) < 4, then
there is an a,, such that z,zy € Béii d)(an) [Hint: The triangle inequality
is always your friend.]

e (3 Points) Conclude that f is uniformly continuous.

Bonus: (4 Points) Prove that if (X, d) is a compact metric space, and f : X —
R is continuous (with the standard metric on R), then f is bounded. That is,
there is an M € R such that for all x € X we have |f(z)| < M.



Problem 5 (Topological Spaces)

You may freely use the following fact. If f : R — R is a non-zero polynomial,
then there are only finitely many numbers = € R such that f(z) = 0.

e (1 Point) State the definition of a topological space.

(1 Point) State the definition of a Hausdorff topological space.

(3 Points) Let (X, d) be a metric space and 74 the metric topology. Prove
that (X, 74) is a Hausdorff topological space.

(2 Points) Let 72 C P(R) be the set of all &/ C R such that there is a
polynomial f: R — R with € R\ U if and only if f(z) = 0. Show that
Tz is a topology. This is the Zariski Topology on R.

(2 Points) Show that (R, 7z) is not a Hausdorff topological space.



