
Point-Set Topology: Midterm

Summer 2022

Problem 1 (Logic)

The truth table for a logical connective (such as ⇒) that combines two propo-
sitions P and Q into a single proposition (like P ⇒ Q) is a table that exhausts
all possibilities of P and Q being true and false. The truth table for implication
is given in Tab. 1

P Q P ⇒ Q
False False True
False True True
True False False
True True True

Table 1: Truth Table for Implication

Prove the absorption laws. If P and Q are propositions, then P or (P and Q)
if and only if P . Using ∨ and ∧ this says:

P ∨ (P ∧Q)⇔ P (1)

Also, P and (P or Q) if and only if P . That is:

P ∧ (P ∨Q)⇔ P (2)

� (1 Point) Construct the truth table for P ∨Q.

� (1 Point) Construct the truth table for P ∧Q.

� (1 Point) Construct the truth table for P ∨ (P ∧Q).

� (1 Point) Construct the truth table for P ∧ (P ∨Q).

� (1 Point) Compare these with P to prove the absorption laws.

Prove that implication can be defined by negation (¬) and logical or (∨).

� (1 Point) Give the truth table for ¬P .

� (1 Point) Give the truth table for (¬P ) ∨Q.

� (1 Point) Compare this with implication P ⇒ Q.
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Problem 2 (Set Theory)

Here you will construct the real numbers.

� (2 Points) Show that if A and B are sets, there is a set of all functions
f : A→ B. [Hint: Functions are subsets f ⊆ A×B with a special property.
Use the axiom of the power set and the axiom schema of specification to
construct the set of all functions from A to B.]

� (1 Point) Given the rational numbers Q with the standard metric d(x, y) =
|x− y|, state the definition of a Cauchy sequence in Q.

� (2 Points) Let A be the set of all Cauchy sequences a : N → Q (This set
exists by part 1 of this problem). Define the relation R on A by aRb if
and only if |an − bn| → 0. Prove R is an equivalence relation.

� (3 Points) Let R = A/R. Define + on R by [a] + [b] = [c] where c : N→ Q
is the sequence cn = an + bn. Show that c : N → Q is indeed a Cauchy
sequence and that + is well defined on R.
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Problem 3 (Metric Spaces)

� (1 Point) State the definition of a metric space.

� (1 Point) State the definition of a convergent sequence.

� (1 Point) State the definition of a continuous function from a metric space
(X, dX) to a metric space (Y, dY ).

� (3 Points) Prove that if (X, dX), (Y, dY ), and (Z, dZ) are metric spaces,
if f : X → Y and g : Y → Z are continuous, then g ◦ f : X → Z is
continuous.

� (1 Point) State the definition of a closed subset.

� (3 Points) Prove that if D ⊆ Y is closed and f : X → Y is continuous,
then f−1[D] ⊆ X is closed.
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Problem 4 (Compactness)

A uniformly continuous function from a metric space (X, dX) to a metric space
(Y, dY ) is a function f : X → Y such that for all ε > 0 there exists a δ > 0
such that for all x, x0 ∈ X, dX(x, x0) < δ implies dY

(
f(x), f(x0)

)
< ε. Using

cryptic notation, this says:

∀ε>0∃δ>0∀x∈X∀x0∈X

(
dX(x, x0) < δ ⇒ dY

(
f(x), f(x0)

)
< ε

)
(3)

Note, this is stronger than continuity. You proved in HW 1 that continuity is
equivalent to:

∀ε>0∀x∈X∃δ>0∀x0∈X

(
dX(x, x0) < δ ⇒ dY

(
f(x), f(x0)

)
< ε

)
(4)

The definition of uniform continuity swaps the quantifiers. In continuity, given
an ε > 0 and an x ∈ X, you can find a δ > 0 that may depend on ε and
x, δ = δ(ε, x), such that dX(x, x0) < δ implies dY

(
f(x), f(x0)

)
< ε. With

uniform continuity you may find a δ > 0 that works for all x ∈ X, δ only
depends on ε, δ = δ(ε). The function f(x) = 1

x defined on R+ is an example
of a function that is continuous but not uniformly continuous. Given ε > 0
and any x ∈ R+ you can indeed find a δ > 0 such that |x − x0| < δ implies
| 1x −

1
x0
| < ε. But as x gets smaller and smaller, closer to 0, the value of δ must

get smaller too. This shows there can be no fixed positive δ > 0 that works for
all x ∈ R+.

In the problem you will prove the Heine-Cantor theorem. If (X, dX) is a compact
metric space, if (Y, dY ) is a metric space, and if f : X → Y is continuous, then
f is uniformly continuous.

� (2 Points) Let ε > 0. By continuity, for all x ∈ X, there is a δx > 0
such that x0 ∈ X and dX(x, x0) < δx implies dY

(
f(x), f(x0)

)
< ε. Let

Ux = B
(X, dX)
δx/2

(x) and O = {Ux | x ∈ X }. Show that O is an open cover

of X.

� (2 Points) We proved that (X, dX) is compact if and only if every open
cover O has a finite subcover ∆ ⊆ O. Write ∆ = {Ua0 , . . . , UaN }. Let
δ = 1

2min(δa0 , . . . , δaN ). Show that if x, x0 ∈ X and dX(x, x0) < δ, then

there is an an such that x, x0 ∈ B(X, d)
δan

(an) [Hint: The triangle inequality
is always your friend.]

� (3 Points) Conclude that f is uniformly continuous.

Bonus: (4 Points) Prove that if (X, d) is a compact metric space, and f : X →
R is continuous (with the standard metric on R), then f is bounded. That is,
there is an M ∈ R such that for all x ∈ X we have |f(x)| < M .
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Problem 5 (Topological Spaces)

You may freely use the following fact. If f : R → R is a non-zero polynomial,
then there are only finitely many numbers x ∈ R such that f(x) = 0.

� (1 Point) State the definition of a topological space.

� (1 Point) State the definition of a Hausdorff topological space.

� (3 Points) Let (X, d) be a metric space and τd the metric topology. Prove
that (X, τd) is a Hausdorff topological space.

� (2 Points) Let τZ ⊆ P(R) be the set of all U ⊆ R such that there is a
polynomial f : R→ R with x ∈ R \ U if and only if f(x) = 0. Show that
τZ is a topology. This is the Zariski Topology on R.

� (2 Points) Show that (R, τZ) is not a Hausdorff topological space.
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