Point-Set Topology: Midterm

Summer 2022

Problem 1 (Logic)

The truth table for a logical connective (such as \Rightarrow) that combines two propositions P and Q into a single proposition (like $P \Rightarrow Q$) is a table that exhausts all possibilities of P and Q being true and false. The truth table for implication is given in Tab. 1

P	Q	$P \Rightarrow Q$
False	False	True
False	True	True
True	False	False
True	True	True

Table 1: Truth Table for Implication
Prove the absorption laws. If P and Q are propositions, then P or $(P$ and $Q)$ if and only if P. Using \vee and \wedge this says:

$$
\begin{equation*}
P \vee(P \wedge Q) \Leftrightarrow P \tag{1}
\end{equation*}
$$

Also, P and $(P$ or $Q)$ if and only if P. That is:

$$
\begin{equation*}
P \wedge(P \vee Q) \Leftrightarrow P \tag{2}
\end{equation*}
$$

- (1 Point) Construct the truth table for $P \vee Q$.
- (1 Point) Construct the truth table for $P \wedge Q$.
- (1 Point) Construct the truth table for $P \vee(P \wedge Q)$.
- (1 Point) Construct the truth table for $P \wedge(P \vee Q)$.
- (1 Point) Compare these with P to prove the absorption laws.

Prove that implication can be defined by negation (\neg) and logical or (V).

- (1 Point) Give the truth table for $\neg P$.
- (1 Point) Give the truth table for $(\neg P) \vee Q$.
- (1 Point) Compare this with implication $P \Rightarrow Q$.

Solution.

P	Q	$P \vee Q$
False	False	False
False	True	True
True	False	True
True	True	True

Table 2: Truth Table for Logical Disjunction (V)

P	Q	$P \wedge Q$
False	False	False
False	True	False
True	False	False
True	True	True

Table 3: Truth Table for Logical Conjunction (\wedge)

P	Q	$P \vee Q$	$P \wedge(P \vee Q)$
False	False	False	False
False	True	True	False
True	False	True	True
True	True	True	True

Table 4: Truth Table for the First Absorption Law

P	Q	$P \wedge Q$	$P \vee(P \wedge Q)$
False	False	False	False
False	True	False	False
True	False	False	True
True	True	True	True

Table 5: Truth Table for the Second Absorption Law

In both Tab. 4 and Tab. 5 the columns for $P, P \wedge(P \vee Q)$, and $P \vee(P \wedge Q)$ are identical, meaning P is true if and only if $P \wedge(P \vee Q)$ is true, if and only if $P \vee(P \wedge Q)$ is true. This is precisely the absorption laws.

P	$\neg P$
False	True
True	False

Table 6: Truth Table for Negation

P	Q	$\neg P$	$(\neg P) \vee Q$
False	False	True	True
False	True	True	True
True	False	False	False
True	True	False	True

Table 7: Equivalent Representation of Implication
This is the same table as implication. Usually this is done the other way around. In a Hilbert System the main primitive notion is implication (\Rightarrow), and there are a few axioms for what it means. Logical or is then defined as $P \vee Q \Leftrightarrow(\neg P) \Rightarrow Q$. All of the logical symbols are further defined using implication.

Problem 2 (Set Theory)

Here you will construct the real numbers.

- (2 Points) Show that if A and B are sets, there is a set of all functions $f: A \rightarrow B$. [Hint: Functions are subsets $f \subseteq A \times B$ with a special property. Use the axiom of the power set and the axiom schema of specification to construct the set of all functions from A to B.]
- (1 Point) Given the rational numbers \mathbb{Q} with the standard metric $d(x, y)=$ $|x-y|$, state the definition of a Cauchy sequence in \mathbb{Q}.
- (2 Points) Let A be the set of all Cauchy sequences $a: \mathbb{N} \rightarrow \mathbb{Q}$ (This set exists by part 1 of this problem). Define the relation R on A by $a R b$ if and only if $\left|a_{n}-b_{n}\right| \rightarrow 0$. Prove R is an equivalence relation.
- (3 Points) Let $\mathbb{R}=A / R$. Define + on \mathbb{R} by $[a]+[b]=[c]$ where $c: \mathbb{N} \rightarrow \mathbb{Q}$ is the sequence $c_{n}=a_{n}+b_{n}$. Show that $c: \mathbb{N} \rightarrow \mathbb{Q}$ is indeed a Cauchy sequence and that + is well defined on \mathbb{R}.

Solution. By the axiom of the power set, the set $\mathcal{P}(A \times B)$ exists. Let $P(f)$ be the sentence f is a function from A to B. Let $\mathcal{F}(A, B)$ be defined by:

$$
\begin{equation*}
\mathcal{F}(A, B)=\{f \in \mathcal{P}(A \times B) \mid P(f)\} \tag{3}
\end{equation*}
$$

Then $f \in \mathcal{F}(A, B)$ if and only if f is a function from A to B. That is, $\mathcal{F}(A, B)$ is the set of all functions $f: A \rightarrow B$. We can be very cryptic if we so desire:

$$
\begin{equation*}
\mathcal{F}(A, B)=\left\{f \in \mathcal{P}(A \times B) \mid \forall_{a \in A} \exists!_{b \in B}((a, b) \in f)\right\} \tag{4}
\end{equation*}
$$

Where \exists ! is an extension of the \exists qualifier. \exists ! means there exists a unique element satisfying the following proposition.

Now, using this idea to construct the real numbers. A Cauchy sequence in \mathbb{Q} is a sequence $a: \mathbb{N} \rightarrow \mathbb{Q}$ such that for all $r>0, r \in \mathbb{Q}$, there is an $N \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}$ with $m, n>N$ we have $\left|a_{m}-a_{n}\right|<\varepsilon$. We want to say for all $r>0, r \in \mathbb{R}$, but we don't have \mathbb{R} yet! Now, using the first part of this problem, since a Cauchy sequence is a particular function $a: \mathbb{N} \rightarrow \mathbb{Q}$, and the set $\mathcal{F}(\mathbb{N}, \mathbb{Q})$ of all functions from \mathbb{N} to \mathbb{Q} exists, we can apply the sentence $P(a)$, a is a Cauchy sequence to the set $\mathcal{F}(\mathbb{N}, \mathbb{Q})$ and obtain the set A of all Cauchy sequences in \mathbb{Q}. The relation R on A defined by $a R b$ if and only if $\left|a_{n}-b_{n}\right| \rightarrow 0$ is an equivalence relation. It is reflexive since $\left|a_{n}-a_{n}\right|=0$ for all $n \in \mathbb{N}$, so indeed $\left|a_{n}-a_{n}\right| \rightarrow 0$. It is symmetric. If $a R b$, then:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|b_{n}-a_{n}\right|=\lim _{n \rightarrow \infty}\left|(-1)\left(a_{n}-b_{n}\right)\right|=\lim _{n \rightarrow \infty}\left|a_{n}-b_{n}\right|=0 \tag{5}
\end{equation*}
$$

and hence $b R a$. Lastly, it is transitive. If $a R b$ and $b R c$, then $\left|a_{n}-b_{n}\right| \rightarrow 0$ and $\left|b_{n}-c_{n}\right| \rightarrow 0$. Let $\varepsilon>0$. There exists $N_{0}, N_{1} \in \mathbb{N}$ such that $n \in \mathbb{N}$ and $n>N_{0}$
implies $\left|a_{n}-b_{n}\right|<\varepsilon / 2$, and $n \in \mathbb{N}$ and $n>N_{1}$ implies $\left|b_{n}-c_{n}\right|<\varepsilon / 2$. Let $N=\max \left(N_{0}, N_{1}\right)$. Then for $n \in \mathbb{N}$ and $n>N$ we have:

$$
\begin{equation*}
\left|a_{n}-c_{n}\right|=\left|a_{n}-b_{n}+b_{n}-c_{n}\right| \leq\left|a_{n}-b_{n}\right|+\left|b_{n}-c_{n}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \tag{6}
\end{equation*}
$$

and hence $\left|a_{n}-c_{n}\right| \rightarrow 0$. So R is reflexive, symmetric, and transitive, and is therefore an equivalence relation.

Defining $[a]+[b]=[c]$ where $c: \mathbb{N} \rightarrow \mathbb{Q}$ is the sequence $c_{n}=a_{n}+b_{n}$, first c is indeed a Cauchy sequence. Let $\varepsilon>0$. Since a is a Cauchy sequence there is an $N_{0} \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}$ with $m, n>N_{0}$ we have $\left|a_{m}-a_{n}\right|<\varepsilon / 2$. But b is a Cauchy sequence, so there is an $N_{1} \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}$ with $m, n>N_{1}$ we have $\left|b_{m}-b_{n}\right|<\varepsilon / 2$. Let $N=\max \left(N_{0}, N_{1}\right)$. Then for all $m, n \in \mathbb{N}$ with $m, n>N$ we have:

$$
\begin{align*}
\left|c_{m}-c_{n}\right| & =\left|\left(a_{m}+b_{m}\right)-\left(a_{n}+b_{n}\right)\right| \tag{7}\\
& =\left|a_{m}+b_{m}-a_{n}-b_{n}\right| \tag{8}\\
& =\left|\left(a_{m}-a_{n}\right)+\left(b_{m}-b_{n}\right)\right| \tag{9}\\
& \leq\left|a_{m}-a_{n}\right|+\left|b_{m}-b_{n}\right| \tag{10}\\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \tag{11}\\
& =\varepsilon \tag{12}
\end{align*}
$$

so c is a Cauchy sequence. Addition is well-defined. If $a, b, x, y \in A$ are Cauchy sequences, and if $[a]=[x]$ and $[b]=[y]$, then:

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left|\left(a_{n}+b_{n}\right)-\left(x_{n}+y_{n}\right)\right| & =\lim _{n \rightarrow \infty}\left|a_{n}+b_{n}-x_{n}-y_{n}\right| \tag{13}\\
& =\lim _{n \rightarrow \infty}\left|\left(a_{n}-x_{n}\right)+\left(b_{n}-y_{n}\right)\right| \tag{14}\\
& \leq \lim _{n \rightarrow \infty}\left(\left|a_{n}-x_{n}\right|+\left|b_{n}-y_{n}\right|\right) \tag{15}\\
& =\lim _{n \rightarrow \infty}\left|a_{n}-x_{n}\right|+\lim _{n \rightarrow \infty}\left|b_{n}-y_{n}\right| \tag{16}\\
& =0+0 \tag{17}\\
& =0 \tag{18}
\end{align*}
$$

And hence $(a+b) R(x+y)$, meaning $[a]+[b]=[x]+[y]$, so addition is welldefined.

Problem 3 (Metric Spaces)

- (1 Point) State the definition of a metric space.
- (1 Point) State the definition of a convergent sequence.
- (1 Point) State the definition of a continuous function from a metric space $\left(X, d_{X}\right)$ to a metric space $\left(Y, d_{Y}\right)$.
- (3 Points) Prove that if $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$, and $\left(Z, d_{Z}\right)$ are metric spaces, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous, then $g \circ f: X \rightarrow Z$ is continuous.
- (1 Point) State the definition of a closed subset.
- (3 Points) Prove that if $\mathcal{D} \subseteq Y$ is closed and $f: X \rightarrow Y$ is continuous, then $f^{-1}[\mathcal{D}] \subseteq X$ is closed.

Solution. A metric space is a set X with a metric function $d: X \times X \rightarrow \mathbb{R}$ that satisfies the following:

- Positive-Definiteness
$d(x, y) \geq 0$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$.
- Symmetry
$d(x, y)=d(y, x)$ for all $x, y \in X$.
- Triange Inequality

$$
d(x, z) \leq d(x, y)+d(y, z) \text { for all } x, y, z \in X
$$

A convergent sequence in a metric space (X, d) is a sequence $a: \mathbb{N} \rightarrow X$ such that there is an $x \in X$ such that for all $\varepsilon>0$ there is an $N \in \mathbb{N}$ such that $n \in \mathbb{N}$ and $n>N$ implies $d\left(x, a_{n}\right)<\varepsilon$.

A continuous function between metric spaces is a function that maps convergent sequences to convergent sequences. That is, given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a continuous function is a function $f: X \rightarrow Y$ such that for all convergent sequences $a: \mathbb{N} \rightarrow X$ such that $a_{n} \rightarrow x$ for some $x \in X$, it is true that $f\left(a_{n}\right) \rightarrow f(x)$.

Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous. Let $a: \mathbb{N} \rightarrow X$ be a convergent sequence with $a_{n} \rightarrow x \in X$. Since f is continuous, $f\left(a_{n}\right) \rightarrow f(x)$. Since g is continuous and $f(a)$ is a convergent sequence, $g\left(f\left(a_{n}\right)\right) \rightarrow g(f(x))$. But $(g \circ f)\left(a_{n}\right)=g\left(f\left(a_{n}\right)\right)$, so $(g \circ f)\left(a_{n}\right) \rightarrow(g \circ f)(x)$. Hence, $g \circ f$ is continuous.

A closed set in a metric space (X, d) is a subset $\mathcal{C} \subseteq X$ such that for every sequence $a: \mathbb{N} \rightarrow \mathcal{C}$ such that $a_{n} \rightarrow x \in X$ it is true that $x \in \mathcal{C}$. That is, \mathcal{C} has all of its limit points.

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and $f: X \rightarrow Y$ continuous. Let $\mathcal{D} \subseteq Y$ be closed and $\mathcal{C}=f^{-1}[\mathcal{D}]$. Let $a: \mathbb{N} \rightarrow \mathcal{C}$ be a convergent sequence with limit $x \in X$. Since f is continuous, $f\left(a_{n}\right) \rightarrow f(x)$. But \mathcal{D} is closed and $f\left(a_{n}\right) \in \mathcal{D}$, so $f(x) \in \mathcal{D}$. Hence $x \in \mathcal{C}$, so \mathcal{C} is closed.

Problem 4 (Compactness)

A uniformly continuous function from a metric space $\left(X, d_{X}\right)$ to a metric space $\left(Y, d_{Y}\right)$ is a function $f: X \rightarrow Y$ such that for all $\varepsilon>0$ there exists a $\delta>0$ such that for all $x, x_{0} \in X, d_{X}\left(x, x_{0}\right)<\delta$ implies $d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon$. Using cryptic notation, this says:

$$
\begin{equation*}
\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x \in X} \forall_{x_{0} \in X}\left(d_{X}\left(x, x_{0}\right)<\delta \Rightarrow d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon\right) \tag{19}
\end{equation*}
$$

Note, this is stronger than continuity. You proved in HW 1 that continuity is equivalent to:

$$
\begin{equation*}
\forall_{\varepsilon>0} \forall_{x \in X} \exists_{\delta>0} \forall_{x_{0} \in X}\left(d_{X}\left(x, x_{0}\right)<\delta \Rightarrow d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon\right) \tag{20}
\end{equation*}
$$

The definition of uniform continuity swaps the quantifiers. In continuity, given an $\varepsilon>0$ and an $x \in X$, you can find a $\delta>0$ that may depend on ε and $x, \delta=\delta(\varepsilon, x)$, such that $d_{X}\left(x, x_{0}\right)<\delta$ implies $d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon$. With uniform continuity you may find a $\delta>0$ that works for all $x \in X, \delta$ only depends on $\varepsilon, \delta=\delta(\varepsilon)$. The function $f(x)=\frac{1}{x}$ defined on \mathbb{R}^{+}is an example of a function that is continuous but not uniformly continuous. Given $\varepsilon>0$ and any $x \in \mathbb{R}^{+}$you can indeed find a $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies $\left|\frac{1}{x}-\frac{1}{x_{0}}\right|<\varepsilon$. But as x gets smaller and smaller, closer to 0 , the value of δ must get smaller too. This shows there can be no fixed positive $\delta>0$ that works for all $x \in \mathbb{R}^{+}$.

In the problem you will prove the Heine-Cantor theorem. If $\left(X, d_{X}\right)$ is a compact metric space, if $\left(Y, d_{Y}\right)$ is a metric space, and if $f: X \rightarrow Y$ is continuous, then f is uniformly continuous.

- (2 Points) Let $\varepsilon>0$. By continuity, for all $x \in X$, there is a $\delta_{x}>0$ such that $x_{0} \in X$ and $d_{X}\left(x, x_{0}\right)<\delta_{x}$ implies $d_{Y}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon$. Let $\mathcal{U}_{x}=B_{\delta_{x} / 2}^{\left(X, d_{X}\right)}(x)$ and $\mathcal{O}=\left\{\mathcal{U}_{x} \mid x \in X\right\}$. Show that \mathcal{O} is an open cover of X.
- (2 Points) We proved that $\left(X, d_{X}\right)$ is compact if and only if every open cover \mathcal{O} has a finite subcover $\Delta \subseteq \mathcal{O}$. Write $\Delta=\left\{\mathcal{U}_{a_{0}}, \ldots, \mathcal{U}_{a_{N}}\right\}$. Let $\delta=\frac{1}{2} \min \left(\delta_{a_{0}}, \ldots, \delta_{a_{N}}\right)$. Show that if $x, x_{0} \in X$ and $d_{X}\left(x, x_{0}\right)<\delta$, then there is an a_{n} such that $x, x_{0} \in B_{\delta a_{n}}^{(X, d)}\left(a_{n}\right)$ [Hint: The triangle inequality is always your friend.]
- (3 Points) Conclude that f is uniformly continuous.

Bonus: (4 Points) Prove that if (X, d) is a compact metric space, and $f: X \rightarrow$ \mathbb{R} is continuous (with the standard metric on \mathbb{R}), then f is bounded. That is, there is an $M \in \mathbb{R}$ such that for all $x \in X$ we have $|f(x)|<M$.

Solution. For all $\mathcal{U} \in \mathcal{O}, \mathcal{U}$ is an open ball, and hence open. But moreover, for all $x \in X$, since δ_{x} is chosen to be positive, we have that $B_{\delta_{x}}^{(X, d)}(x)$ is non-empty since it contains the point x. Since this is true of all $x \in X, \mathcal{O}$ is a collection of open sets that cover X, and is therefore an open cover.

Let $x, x_{0} \in X$ be such that $d_{X}\left(x, x_{0}\right)<\delta$. Since Δ is a cover of X there is a $\mathcal{U}_{n} \in \Delta$ such that $x \in \mathcal{U}_{n}$. But $\mathcal{U}_{n}=B_{\delta_{a_{n} / 2}}^{(X, d)}\left(a_{n}\right)$, so $d_{X}\left(x, a_{n}\right)<\delta_{a_{n}} / 2$. But then, by the triangle inequality, we have:

$$
\begin{equation*}
d_{X}\left(x_{0}, a_{n}\right) \leq d_{X}\left(x_{0}, x\right)+d_{X}\left(x, a_{n}\right)<\delta+\frac{\delta_{a_{n}}}{2} \leq \frac{\delta_{a_{n}}}{2}+\frac{\delta_{a_{n}}}{2}=\delta_{a_{n}} \tag{21}
\end{equation*}
$$

by the definition of δ. So $x, x_{0} \in B_{\delta_{a_{n}}}^{(X, d)}\left(a_{n}\right)$.
Let $x, x_{0} \in X$ with $d_{X}\left(x, x_{0}\right)<\delta$. Then there is an a_{n} such that $x, x_{0} \in$ $B_{\delta_{a_{n}}}^{(X, d)}\left(a_{n}\right)$. But then:
$d_{Y}\left(f(x), f\left(x_{0}\right)\right) \leq d_{Y}\left(f(x), f\left(a_{n}\right)\right)+d_{Y}\left(f\left(x_{0}\right), f\left(a_{n}\right)\right)<\varepsilon+\varepsilon=2 \varepsilon$
Since 2ε can be made arbitrarily small, and since δ was chosen independent of x, f is uniformly continuous.

For the bonus, suppose f is not bounded. Then for all $M \in \mathbb{R}$ there is an $x \in X$ such that $|f(x)| \geq M$. In particular, for all $n \in \mathbb{N}$ there is an $a_{n} \in X$ such that $\left|f\left(a_{n}\right)\right| \geq n$. But then $a: \mathbb{N} \rightarrow X$ is a sequence in a compact metric space, so there is a convergent subsequence a_{k}. Let $x \in X$ be the limit, $a_{k_{n}} \rightarrow x$. But f is continuous, so if $a_{k_{n}} \rightarrow x$, then $f\left(a_{k_{n}}\right) \rightarrow f(x)$. Let $N \in \mathbb{N}$ be such that $N>|f(x)|+1$. But then for all $n \in \mathbb{N}$ with $n>N$ we have $\left|f(x)-f\left(a_{k_{n}}\right)\right|>1$, so $f\left(a_{k_{n}}\right)$ can't converge to $f(x)$, a contradiction. So f is bounded.

Problem 5 (Topological Spaces)

You may freely use the following fact. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a non-zero polynomial, then there are only finitely many numbers $x \in \mathbb{R}$ such that $f(x)=0$.

- (1 Point) State the definition of a topological space.
- (1 Point) State the definition of a Hausdorff topological space.
- (3 Points) Let (X, d) be a metric space and τ_{d} the metric topology. Prove that $\left(X, \tau_{d}\right)$ is a Hausdorff topological space.
- (2 Points) Let $\tau_{Z} \subseteq \mathcal{P}(\mathbb{R})$ be the set of all $\mathcal{U} \subseteq \mathbb{R}$ such that there is a polynomial $f: \mathbb{R} \rightarrow \mathbb{R}$ with $x \in \mathbb{R} \backslash \mathcal{U}$ if and only if $f(x)=0$. Show that τ_{Z} is a topology. This is the Zariski Topology on \mathbb{R}.
- (2 Points) Show that $\left(\mathbb{R}, \tau_{Z}\right)$ is not a Hausdorff topological space.

Solution. A topological space is a set X with a topology τ, which is a subset $\tau \subseteq \mathcal{P}(X)$ satisfying:

- $\emptyset \in \tau$
- $X \in \tau$
- If $\mathcal{U}, \mathcal{V} \in \tau$, then $\mathcal{U} \cap \mathcal{V} \in \tau$.
- If $\mathcal{O} \subseteq \tau$, then $\bigcup \mathcal{O} \in \tau$.

A Hausdorff topological space is a topological space (X, τ) such that for all $x, y \in X$ with $x \neq y$ there are open sets $\mathcal{U}, \mathcal{V} \in \tau$ such that $x \in \mathcal{U}, y \in \mathcal{V}$, and $\mathcal{U} \cap \mathcal{V}=\emptyset$.

A metrizable space is Hausdorff. Let (X, τ) be metrizable, with metric d inducing the topology τ. Let $x, y \in X$ be distinct, $x \neq y$. Since d is a metric, $d(x, y)>0$. Let $\varepsilon=\frac{1}{2} d(x, y)$. Let $\mathcal{U}=B_{\varepsilon}^{(X, d)}(x)$ and $\mathcal{V}=B_{\varepsilon}^{(X, d)}(y)$. Then, since open balls are open, \mathcal{U} and \mathcal{V} are elements of τ. Suppose $z \in \mathcal{U} \cap \mathcal{V}$. Then:

$$
\begin{equation*}
d(x, y) \leq d(x, z)+d(z, y)<\varepsilon+\varepsilon=d(x, y) \tag{23}
\end{equation*}
$$

so $d(x, y)<d(x, y)$, a contradiction, and therefore $\mathcal{U} \cap \mathcal{V}=\emptyset$. That is, (X, τ) is Hausdorff.

The Zariski topology is a topology. The entire set is in it since $f(x)=1$ is a polynomial and $f(x)=0$ if and only if $x \in \emptyset$. So $\mathbb{R}=\mathbb{R} \backslash \emptyset$ is an element of τ_{Z}. Similarly, $f(x)=0$ is a polynomial and $f(x)=0$ for all $x \in \mathbb{R}$, hence $\emptyset=\mathbb{R} \backslash \mathbb{R}$ is in τ_{Z}. Let $\mathcal{U}, \mathcal{V} \in \tau_{Z}$ be open sets. Then there are polynomials f and g corresponding to \mathcal{U} and \mathcal{V}, respectively. But the product of polynomials is a polynomial, so $h=f g$ is a polynomial. But then $h(x)=0$ if and only if
$f(x) g(x)=0$. But $f(x) g(x)=0$ if and only if $f(x)=0$ or $g(x)=0$ (Euclid's theorem). But then $h(x)=0$ if and only if $x \in \mathbb{R} \backslash \mathcal{U}$ or $x \in \mathbb{R} \backslash \mathcal{V}$. Thus $h(x)=0$ if and only if $x \in \mathbb{R} \backslash(\mathcal{U} \cap \mathcal{V})$, so $\mathcal{U} \cap \mathcal{V}$ is open. Lastly, let $\mathcal{O} \subseteq \tau_{Z}$. If \mathcal{O} is empty, the union is empty, and the empty set is an element of τ_{Z}. If $\mathbb{R} \in \mathcal{O}$, then $\bigcup \mathcal{O}=\mathbb{R}$, and $\mathbb{R} \in \tau_{Z}$. So suppose \mathcal{O} is non-empty and $\mathbb{R} \notin \mathcal{O}$. But then every $\mathcal{U} \in \mathcal{O}$ corresponds to a polynomial f where $f(x)=0$ for at least some $x \in \mathbb{R}$. Let $\mathcal{U} \in \mathcal{O}$ and let f be the corresponding polynomial. But then $\mathbb{R} \backslash \mathcal{U}$ is finite since a non-zero polynomial has only finitely many zeros. But then:

$$
\begin{equation*}
\mathbb{R} \backslash \bigcup \mathcal{O} \subseteq \mathbb{R} \backslash \mathcal{U} \tag{24}
\end{equation*}
$$

So $\mathbb{R} \backslash \bigcup \mathcal{O}$ is finite. Let the elements be x_{0}, \ldots, x_{n}. Let $h(x)$ be defined by:

$$
\begin{equation*}
h(x)=\prod_{k=0}^{n}\left(x-x_{k}\right)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) \tag{25}
\end{equation*}
$$

Then $h(x)=0$ if and only if $x \in \mathbb{R} \backslash \bigcup \mathcal{O}$. Hence $\bigcup \mathcal{O}$ is open.
$\left(\mathbb{R}, \tau_{Z}\right)$ is not Hausdorff. Let \mathcal{U}, \mathcal{V} be non-empty proper open subsets. Then, since non-zero polynomials have only finitely many zeros, $\mathbb{R} \backslash \mathcal{U}$ and $\mathbb{R} \backslash \mathcal{V}$ are finite. But then $\mathcal{U} \cap \mathcal{V}$ must be infinite since \mathbb{R} is infinite, and hence $\left(X, \tau_{Z}\right)$ can not be Hausdorff.

