Point-Set Topology: Midterm

Summer 2022

Problem 1 (Logic)

The truth table for a logical connective (such as =) that combines two propo-
sitions P and @ into a single proposition (like P = @) is a table that exhausts
all possibilities of P and () being true and false. The truth table for implication
is given in Tab. 1

P | Q |P=Q
False | False True
False | True True
True | False False
True | True True

Table 1: Truth Table for Implication

Prove the absorption laws. If P and @ are propositions, then P or (P and Q)
if and only if P. Using V and A this says:

Pv(PANQ)< P (1)
Also, P and (P or @) if and only if P. That is:
PA(PVQ)& P (2)

1 Point) Construct the truth table for PV Q.

( )
(1 Point) Construct the truth table for P A Q.

(1 Point) Construct the truth table for PV (P A Q).
( )

(

1 Point) Construct the truth table for P A (P V Q).
¢ (1 Point) Compare these with P to prove the absorption laws.
Prove that implication can be defined by negation (=) and logical or (V).
e (1 Point) Give the truth table for —P.
e (1 Point) Give the truth table for (=P) V Q.

¢ (1 Point) Compare this with implication P = Q.



Table 2: Truth Table for Logical Disjunction (V)

Table 3: Truth Table for Logical Conjunction (A)

P | Q@ |PVQ
False | False | False
False | True True
True | False | True
True | True True

P | Q |PAQ
False | False | False
False | True | False
True | False | False
True | True True

P | Q@ |PVQ|PA(PVQ)
False | False | False False
False | True True False
True | False | True True
True | True True True

Table 4: Truth Table for the First Absorption Law

P Q | PAQ|PV(PAQ)
False | False | False False
False | True | False False
True | False | False True
True | True True True

Table 5: Truth Table for the Second Absorption Law

In both Tab. 4 and Tab. 5 the columns for P, PA (P V @), and PV (P A Q)
are identical, meaning P is true if and only if P A (P V Q) is true, if and only if
PV (P AQ) is true. This is precisely the absorption laws.

Table 6: Truth Table for Negation



P | Q@ | -P | (-P)VvQ
False | False | True True
False | True | True True
True | False | False False
True | True | False True

Table 7: Equivalent Representation of Implication

This is the same table as implication. Usually this is done the other way around.
In a Hilbert System the main primitive notion is implication (=), and there are a
few axioms for what it means. Logical or is then defined as PVQ < (=P) = Q.
All of the logical symbols are further defined using implication. O



Problem 2 (Set Theory)

Here you will construct the real numbers.

e (2 Points) Show that if A and B are sets, there is a set of all functions
f: A — B. [Hint: Functions are subsets f C Ax B with a special property.
Use the axiom of the power set and the axiom schema of specification to
construct the set of all functions from A to B.]

e (1 Point) Given the rational numbers Q with the standard metric d(z, y) =
| — yl, state the definition of a Cauchy sequence in Q.

e (2 Points) Let A be the set of all Cauchy sequences a : N — Q (This set
exists by part 1 of this problem). Define the relation R on A by aRb if
and only if |a, — b,| — 0. Prove R is an equivalence relation.

e (3 Points) Let R = A/R. Define + on R by [a] + [b] = [¢] where ¢: N — Q
is the sequence ¢, = a, + b,. Show that ¢ : N — Q is indeed a Cauchy
sequence and that + is well defined on R.

Solution. By the axiom of the power set, the set P(A x B) exists. Let P(f) be
the sentence f is a function from A to B. Let F(A, B) be defined by:

F(A, B) ={feP(AxB)| P(f)} 3)

Then f € F(A, B) if and only if f is a function from A to B. That is, F(A, B)
is the set of all functions f: A — B. We can be very cryptic if we so desire:

F(4, B) = {F € P(Ax B) | VucaFuen((a, b) € f) } @)

Where 3! is an extension of the 3 qualifier. 3! means there exists a unique
element satisfying the following proposition.

Now, using this idea to construct the real numbers. A Cauchy sequence in Q is
a sequence a : N — Q such that for all r > 0, r € Q, there is an N € N such
that for all m,n € N with m,n > N we have |a,, — a,| < &. We want to say
for all » > 0, » € R, but we don’t have R yet! Now, using the first part of this
problem, since a Cauchy sequence is a particular function a : N — Q, and the
set F(N, Q) of all functions from N to Q exists, we can apply the sentence P(a),
a is a Cauchy sequence to the set F(N, Q) and obtain the set A of all Cauchy
sequences in Q. The relation R on A defined by aRb if and only if |a,, —b,| — 0
is an equivalence relation. It is reflexive since |a, — a,| = 0 for all n € N, so
indeed |a,, — a,| — 0. It is symmetric. If aRb, then:

nh_{go b, — an| = nh_{I;o [(=1)(an —bn)| = nlggo an —by| =0 (5)
and hence bRa. Lastly, it is transitive. If aRb and bRc, then |a, — b, | — 0 and
|y, — ¢n| — 0. Let € > 0. There exists Ny, N7 € N such that n € N and n > Ny



implies |a, — b,| < /2, and n € N and n > N; implies |b, — ¢,| < /2. Let
N = max(Ny, N1). Then for n € N and n > N we have:

e €
lan, — cnl = lan — by + by, — cn| < an —bn| + |bn — cn| < 5-}-5:6 (6)
and hence |a, — ¢,| — 0. So R is reflexive, symmetric, and transitive, and is
therefore an equivalence relation.

Defining [a] + [b] = [¢] where ¢ : N — Q is the sequence ¢, = a,, + by, first ¢ is
indeed a Cauchy sequence. Let € > 0. Since a is a Cauchy sequence there is an
Ny € N such that for all m,n € N with m,n > Ny we have |a,, — a,| < /2.
But b is a Cauchy sequence, so there is an N7 € N such that for all m,n € N
with m,n > Ny we have |b,, — b,| < /2. Let N = max(Ny, N1). Then for all
m,n € N with m,n > N we have:

|Cm - Cn| = |(am + bm) - (an + bn)| (7)
:|am+bm_an_bn‘ (8)
= [(am — an) + (b — by 9)
E €
Sz 11
<5+ (11)
so ¢ is a Cauchy sequence. Addition is well-defined. If a,b, x,y € A are Cauchy
sequences, and if [a] = [z] and [b] = [y], then:
nh_{go [(@n +bn) = (T +yn)| = nh_{go lan + b — Tp — Yn| (13)
= nlggo ‘(an - xn) + (bn - yn)| (14)
= lim ‘Cln - Z‘n‘ + lim ‘bn - yn| (16)
n—0o0 n—0o0
=040 (17)
=0 (18)

And hence (a + b)R(z 4+ y), meaning [a] + [b] = [z] + [y], so addition is well-
defined. 0



Problem 3 (Metric Spaces)

e (1 Point) State the definition of a metric space.

1 Point) State the definition of a convergent sequence.

(
(
(1 Point) State the definition of a continuous function from a metric space
(X, dx) to a metric space (Y, dy).

(

3 Points) Prove that if (X, dx), (Y, dy), and (Z, dz) are metric spaces,
if f: X —-Yandg:Y — Z are continuous, then go f : X — Z is
continuous.

(1 Point) State the definition of a closed subset.

(3 Points) Prove that if D C Y is closed and f : X — Y is continuous,
then f~1[D] C X is closed.

Solution. A metric space is a set X with a metric function d : X x X — R that
satisfies the following:

e Positive-Definiteness

d(z,y) >0 for all z,y € X and d(z, y) =0 if and only if z = y.

e Symmetry
d(z, y) = d(y, x) for all z,y € X.

e Triange Inequality
d(z, z) < d(z, y) +d(y, z) for all z,y,z € X.

A convergent sequence in a metric space (X, d) is a sequence a : N — X such
that there is an # € X such that for all € > 0 there is an N € N such that n € N
and n > N implies d(z, a,) < €.

A continuous function between metric spaces is a function that maps conver-
gent sequences to convergent sequences. That is, given metric spaces (X, dx)
and (Y, dy), a continuous function is a function f : X — Y such that for all
convergent sequences a : N — X such that a,, — z for some z € X, it is true

that f(a,) — f(x).

Suppose f : X — Y and g : Y — Z are continuous. Let ¢ : N — X be a
convergent sequence with a, — x € X. Since f is continuous, f(a,) — f(x).
Since g is continuous and f(a) is a convergent sequence, g(f(an)) — g(f(:c))

But (go f)(an) = g(f(an)), so (gof)(an) — (gof)(z). Hence, gof is continuous.

A closed set in a metric space (X, d) is a subset C C X such that for every
sequence a : N — C such that a,, — ¢ € X it is true that x € C. That is, C has
all of its limit points.



Let (X, dx) and (Y, dy) be metric spaces and f : X — Y continuous. Let
D C Y be closed and C = f~1[D]. Let a : N — C be a convergent sequence
with limit € X. Since f is continuous, f(a,) — f(z). But D is closed and
f(an) € D, so f(x) € D. Hence x € C, so C is closed. O



Problem 4 (Compactness)

A uniformly continuous function from a metric space (X, dx) to a metric space
(Y, dy) is a function f : X — Y such that for all € > 0 there exists a § > 0
such that for all z,z9 € X, dx(x, zo) < & implies dy (f(z), f(z0)) < e. Using
cryptic notation, this says:

v‘€>OE|6>OV16XV:60€X (dX(xv {E()) <é= dY (f(.’[), f(xO)) < 5) (19)

Note, this is stronger than continuity. You proved in HW 1 that continuity is
equivalent to:

VesoVeexIo>0Vapex (dX(% z0) < 6 = dy (f(z), f(z0)) < 5) (20)

The definition of uniform continuity swaps the quantifiers. In continuity, given
an ¢ > 0 and an ¢ € X, you can find a § > 0 that may depend on ¢ and
z, 8§ = 0(g, x), such that dx(z, z9) < & implies dy (f(z), f(zo)) < . With
uniform continuity you may find a § > 0 that works for all x € X, § only
depends on €, § = §(¢). The function f(z) = % defined on R is an example
of a function that is continuous but not uniformly continuous. Given ¢ > 0
and any z € RT you can indeed find a § > 0 such that |z — x¢| < & implies
|% — %0| < &. But as x gets smaller and smaller, closer to 0, the value of § must
get smaller too. This shows there can be no fixed positive § > 0 that works for
all z € RT.

In the problem you will prove the Heine-Cantor theorem. If (X, dx) is a compact
metric space, if (Y, dy) is a metric space, and if f : X — Y is continuous, then
f is uniformly continuous.

e (2 Points) Let ¢ > 0. By continuity, for all + € X, there is a 6, > 0
such that zo € X and dx(z, z9) < d, implies dy (f(m), f(a:o)) < e. Let
Uy = Béj(/’;X)(x) and O = {U, | x € X }. Show that O is an open cover
of X.

¢ (2 Points) We proved that (X, dx) is compact if and only if every open
cover O has a finite subcover A C O. Write A = {Uy,, ..., Uy }- Let
§ = imin(dy,, ..., 8ay). Show that if 2, zg € X and dx(z, z¢) < 4, then
there is an a,, such that z,zy € Béii d)(an) [Hint: The triangle inequality
is always your friend.]

e (3 Points) Conclude that f is uniformly continuous.

Bonus: (4 Points) Prove that if (X, d) is a compact metric space, and f : X —
R is continuous (with the standard metric on R), then f is bounded. That is,
there is an M € R such that for all x € X we have |f(z)| < M.



Solution. For all U € O, U is an open ball, and hence open. But moreover, for
all z € X, since d, is chosen to be positive, we have that Bgf’ 4 (z) is non-empty
since it contains the point . Since this is true of all z € X, O is a collection of

open sets that cover X, and is therefore an open cover.

Let x,29 € X be such that dx(x, x9) < . Since A is a cover of X there is a
U, € A such that z € U,. But U,, = B(g‘:(’;g(an), so dx(z, an) < 44, /2. But
then, by the triangle inequality, we have:

6(117, 60/71
2 2

da
dx(zo, an) < dx(xo, ) +dx(x, an) < J + Tn <

by the definition of §. So z,xg € Béf’ d)(an).

Let x,29 € X with dx(x, zg) < 6. Then there is an a, such that z,z¢ €
Béf’ 4 (ay). But then:

dy (f(@), f(z0)) < dy (f(2), fan)) +dy (f(z0), flan)) <e+e=2e (22)

Since 2e can be made arbitrarily small, and since § was chosen independent of
x, f is uniformly continuous.

For the bonus, suppose f is not bounded. Then for all M € R there is an x € X
such that | f(z)| > M. In particular, for all n € N there is an a,, € X such that
|f(an)| > n. But then a : N — X is a sequence in a compact metric space, so
there is a convergent subsequence a,. Let x € X be the limit, ar, — x. But
f is continuous, so if ap, — x, then f(ag,) — f(x). Let N € N be such that
N > |f(z)|+1. But then for all n € N with n > N we have |f(x) — f(ax,)| > 1,
so f(ag,) can’t converge to f(z), a contradiction. So f is bounded. O



Problem 5 (Topological Spaces)

You may freely use the following fact. If f : R — R is a non-zero polynomial,
then there are only finitely many numbers z € R such that f(z) = 0.

e (1 Point) State the definition of a topological space.

(1 Point) State the definition of a Hausdorff topological space.

(3 Points) Let (X, d) be a metric space and 74 the metric topology. Prove
that (X, 74) is a Hausdorff topological space.

(2 Points) Let 7z C P(R) be the set of all &/ C R such that there is a
polynomial f: R — R with € R\ U if and only if f(x) = 0. Show that
Tz is a topology. This is the Zariski Topology on R.

(2 Points) Show that (R, 7z) is not a Hausdorff topological space.

Solution. A topological space is a set X with a topology 7, which is a subset
7 C P(X) satisfying:

e et

e XerT

e IfU,VeET, thenUU NV ET.
e IfOC,then | JO € 7.

A Hausdorff topological space is a topological space (X, 7) such that for all
x,y € X with x # y there are open sets U,V € 7 such that x € U, y € V, and
uny=»0.

A metrizable space is Hausdorff. Let (X, 7) be metrizable, with metric d in-
ducing the topology 7. Let z,y € X be distinct, z # y. Since d is a metric,
d(z,y) > 0. Let ¢ = 3d(z, y). Let U = B d)(m) and V = B9 (y). Then,
since open balls are open, U and V are elements of 7. Suppose z € Y NV. Then:

dlz, y) <d(z, 2) +d(z,y) <e+e=d(z,y) (23)

so d(z, y) < d(z, y), a contradiction, and therefore 4 NV = (). That is, (X, T)
is Hausdorft.

The Zariski topology is a topology. The entire set is in it since f(z) = 11is a
polynomial and f(z) = 0 if and only if x € . So R = R\ @ is an element
of 7z. Similarly, f(z) = 0 is a polynomial and f(z) = 0 for all z € R, hence
) =R\Risin 7z. Let U,V € 77 be open sets. Then there are polynomials f
and g corresponding to U and V), respectively. But the product of polynomials
is a polynomial, so h = fg is a polynomial. But then h(z) = 0 if and only if

10



f(x)g(x) = 0. But f(z)g(x) = 0 if and only if f(z) = 0 or g(z) = 0 (Euclid’s
theorem). But then h(z) = 0 if and only if x € R\ U or x € R\ V. Thus
h(x) = 0if and only if x € R\ (Y NV), soU NV is open. Lastly, let O C 7. If O
is empty, the union is empty, and the empty set is an element of 7. If R € O,
then | JO =R, and R € 7z. So suppose O is non-empty and R ¢ O. But then
every U € O corresponds to a polynomial f where f(z) = 0 for at least some
x € R. Let U € O and let f be the corresponding polynomial. But then R\ &/
is finite since a non-zero polynomial has only finitely many zeros. But then:

R\ JOCR\U (24)

So R\ JO is finite. Let the elements be xq, ..., z,. Let h(z) be defined by:

n

hiz)=[](@—2x) = (@ —z0)(@ —21) -+ (x — 2 (25)

k=0

Then h(z) = 0 if and only if x € R\ |JO. Hence |JO is open.
(R, 7z) is not Hausdorff. Let U,V be non-empty proper open subsets. Then,
since non-zero polynomials have only finitely many zeros, R\ ¢ and R\ V are

finite. But then U NV must be infinite since R is infinite, and hence (X, 7z)
can not be Hausdorff. O
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