
Point-Set Topology: Midterm

Summer 2022

Problem 1 (Logic)

The truth table for a logical connective (such as ⇒) that combines two propo-
sitions P and Q into a single proposition (like P ⇒ Q) is a table that exhausts
all possibilities of P and Q being true and false. The truth table for implication
is given in Tab. 1

P Q P ⇒ Q
False False True
False True True
True False False
True True True

Table 1: Truth Table for Implication

Prove the absorption laws. If P and Q are propositions, then P or (P and Q)
if and only if P . Using ∨ and ∧ this says:

P ∨ (P ∧Q)⇔ P (1)

Also, P and (P or Q) if and only if P . That is:

P ∧ (P ∨Q)⇔ P (2)

� (1 Point) Construct the truth table for P ∨Q.

� (1 Point) Construct the truth table for P ∧Q.

� (1 Point) Construct the truth table for P ∨ (P ∧Q).

� (1 Point) Construct the truth table for P ∧ (P ∨Q).

� (1 Point) Compare these with P to prove the absorption laws.

Prove that implication can be defined by negation (¬) and logical or (∨).

� (1 Point) Give the truth table for ¬P .

� (1 Point) Give the truth table for (¬P ) ∨Q.

� (1 Point) Compare this with implication P ⇒ Q.
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Solution.

P Q P ∨Q
False False False
False True True
True False True
True True True

Table 2: Truth Table for Logical Disjunction (∨)

P Q P ∧Q
False False False
False True False
True False False
True True True

Table 3: Truth Table for Logical Conjunction (∧)

P Q P ∨Q P ∧ (P ∨Q)
False False False False
False True True False
True False True True
True True True True

Table 4: Truth Table for the First Absorption Law

P Q P ∧Q P ∨ (P ∧Q)
False False False False
False True False False
True False False True
True True True True

Table 5: Truth Table for the Second Absorption Law

In both Tab. 4 and Tab. 5 the columns for P , P ∧ (P ∨ Q), and P ∨ (P ∧ Q)
are identical, meaning P is true if and only if P ∧ (P ∨Q) is true, if and only if
P ∨ (P ∧Q) is true. This is precisely the absorption laws.

P ¬P
False True
True False

Table 6: Truth Table for Negation
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P Q ¬P (¬P ) ∨Q
False False True True
False True True True
True False False False
True True False True

Table 7: Equivalent Representation of Implication

This is the same table as implication. Usually this is done the other way around.
In a Hilbert System the main primitive notion is implication (⇒), and there are a
few axioms for what it means. Logical or is then defined as P ∨Q⇔ (¬P )⇒ Q.
All of the logical symbols are further defined using implication.
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Problem 2 (Set Theory)

Here you will construct the real numbers.

� (2 Points) Show that if A and B are sets, there is a set of all functions
f : A→ B. [Hint: Functions are subsets f ⊆ A×B with a special property.
Use the axiom of the power set and the axiom schema of specification to
construct the set of all functions from A to B.]

� (1 Point) Given the rational numbers Q with the standard metric d(x, y) =
|x− y|, state the definition of a Cauchy sequence in Q.

� (2 Points) Let A be the set of all Cauchy sequences a : N → Q (This set
exists by part 1 of this problem). Define the relation R on A by aRb if
and only if |an − bn| → 0. Prove R is an equivalence relation.

� (3 Points) Let R = A/R. Define + on R by [a] + [b] = [c] where c : N→ Q
is the sequence cn = an + bn. Show that c : N → Q is indeed a Cauchy
sequence and that + is well defined on R.

Solution. By the axiom of the power set, the set P(A×B) exists. Let P (f) be
the sentence f is a function from A to B. Let F(A, B) be defined by:

F(A, B) = { f ∈ P(A×B) | P (f) } (3)

Then f ∈ F(A, B) if and only if f is a function from A to B. That is, F(A, B)
is the set of all functions f : A→ B. We can be very cryptic if we so desire:

F(A, B) =
{
f ∈ P(A×B) | ∀a∈A∃!b∈B

(
(a, b) ∈ f

)}
(4)

Where ∃! is an extension of the ∃ qualifier. ∃! means there exists a unique
element satisfying the following proposition.

Now, using this idea to construct the real numbers. A Cauchy sequence in Q is
a sequence a : N → Q such that for all r > 0, r ∈ Q, there is an N ∈ N such
that for all m,n ∈ N with m,n > N we have |am − an| < ε. We want to say
for all r > 0, r ∈ R, but we don’t have R yet! Now, using the first part of this
problem, since a Cauchy sequence is a particular function a : N → Q, and the
set F(N, Q) of all functions from N to Q exists, we can apply the sentence P (a),
a is a Cauchy sequence to the set F(N, Q) and obtain the set A of all Cauchy
sequences in Q. The relation R on A defined by aRb if and only if |an− bn| → 0
is an equivalence relation. It is reflexive since |an − an| = 0 for all n ∈ N, so
indeed |an − an| → 0. It is symmetric. If aRb, then:

lim
n→∞

|bn − an| = lim
n→∞

|(−1)(an − bn)| = lim
n→∞

|an − bn| = 0 (5)

and hence bRa. Lastly, it is transitive. If aRb and bRc, then |an − bn| → 0 and
|bn − cn| → 0. Let ε > 0. There exists N0, N1 ∈ N such that n ∈ N and n > N0
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implies |an − bn| < ε/2, and n ∈ N and n > N1 implies |bn − cn| < ε/2. Let
N = max(N0, N1). Then for n ∈ N and n > N we have:

|an − cn| = |an − bn + bn − cn| ≤ |an − bn|+ |bn − cn| <
ε

2
+
ε

2
= ε (6)

and hence |an − cn| → 0. So R is reflexive, symmetric, and transitive, and is
therefore an equivalence relation.

Defining [a] + [b] = [c] where c : N → Q is the sequence cn = an + bn, first c is
indeed a Cauchy sequence. Let ε > 0. Since a is a Cauchy sequence there is an
N0 ∈ N such that for all m,n ∈ N with m,n > N0 we have |am − an| < ε/2.
But b is a Cauchy sequence, so there is an N1 ∈ N such that for all m,n ∈ N
with m,n > N1 we have |bm − bn| < ε/2. Let N = max(N0, N1). Then for all
m,n ∈ N with m,n > N we have:

|cm − cn| = |(am + bm)− (an + bn)| (7)

= |am + bm − an − bn| (8)

= |(am − an) + (bm − bn)| (9)

≤ |am − an|+ |bm − bn| (10)

<
ε

2
+
ε

2
(11)

= ε (12)

so c is a Cauchy sequence. Addition is well-defined. If a, b, x, y ∈ A are Cauchy
sequences, and if [a] = [x] and [b] = [y], then:

lim
n→∞

|(an + bn)− (xn + yn)| = lim
n→∞

|an + bn − xn − yn| (13)

= lim
n→∞

|(an − xn) + (bn − yn)| (14)

≤ lim
n→∞

(
|an − xn|+ |bn − yn|

)
(15)

= lim
n→∞

|an − xn|+ lim
n→∞

|bn − yn| (16)

= 0 + 0 (17)

= 0 (18)

And hence (a + b)R(x + y), meaning [a] + [b] = [x] + [y], so addition is well-
defined.
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Problem 3 (Metric Spaces)

� (1 Point) State the definition of a metric space.

� (1 Point) State the definition of a convergent sequence.

� (1 Point) State the definition of a continuous function from a metric space
(X, dX) to a metric space (Y, dY ).

� (3 Points) Prove that if (X, dX), (Y, dY ), and (Z, dZ) are metric spaces,
if f : X → Y and g : Y → Z are continuous, then g ◦ f : X → Z is
continuous.

� (1 Point) State the definition of a closed subset.

� (3 Points) Prove that if D ⊆ Y is closed and f : X → Y is continuous,
then f−1[D] ⊆ X is closed.

Solution. A metric space is a set X with a metric function d : X ×X → R that
satisfies the following:

� Positive-Definiteness

d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y.

� Symmetry

d(x, y) = d(y, x) for all x, y ∈ X.

� Triange Inequality

d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

A convergent sequence in a metric space (X, d) is a sequence a : N → X such
that there is an x ∈ X such that for all ε > 0 there is an N ∈ N such that n ∈ N
and n > N implies d(x, an) < ε.

A continuous function between metric spaces is a function that maps conver-
gent sequences to convergent sequences. That is, given metric spaces (X, dX)
and (Y, dY ), a continuous function is a function f : X → Y such that for all
convergent sequences a : N → X such that an → x for some x ∈ X, it is true
that f(an)→ f(x).

Suppose f : X → Y and g : Y → Z are continuous. Let a : N → X be a
convergent sequence with an → x ∈ X. Since f is continuous, f(an) → f(x).
Since g is continuous and f(a) is a convergent sequence, g

(
f(an)

)
→ g

(
f(x)

)
.

But (g◦f)(an) = g
(
f(an)

)
, so (g◦f)(an)→ (g◦f)(x). Hence, g◦f is continuous.

A closed set in a metric space (X, d) is a subset C ⊆ X such that for every
sequence a : N→ C such that an → x ∈ X it is true that x ∈ C. That is, C has
all of its limit points.
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Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y continuous. Let
D ⊆ Y be closed and C = f−1[D]. Let a : N → C be a convergent sequence
with limit x ∈ X. Since f is continuous, f(an) → f(x). But D is closed and
f(an) ∈ D, so f(x) ∈ D. Hence x ∈ C, so C is closed.

7



Problem 4 (Compactness)

A uniformly continuous function from a metric space (X, dX) to a metric space
(Y, dY ) is a function f : X → Y such that for all ε > 0 there exists a δ > 0
such that for all x, x0 ∈ X, dX(x, x0) < δ implies dY

(
f(x), f(x0)

)
< ε. Using

cryptic notation, this says:

∀ε>0∃δ>0∀x∈X∀x0∈X

(
dX(x, x0) < δ ⇒ dY

(
f(x), f(x0)

)
< ε
)

(19)

Note, this is stronger than continuity. You proved in HW 1 that continuity is
equivalent to:

∀ε>0∀x∈X∃δ>0∀x0∈X

(
dX(x, x0) < δ ⇒ dY

(
f(x), f(x0)

)
< ε
)

(20)

The definition of uniform continuity swaps the quantifiers. In continuity, given
an ε > 0 and an x ∈ X, you can find a δ > 0 that may depend on ε and
x, δ = δ(ε, x), such that dX(x, x0) < δ implies dY

(
f(x), f(x0)

)
< ε. With

uniform continuity you may find a δ > 0 that works for all x ∈ X, δ only
depends on ε, δ = δ(ε). The function f(x) = 1

x defined on R+ is an example
of a function that is continuous but not uniformly continuous. Given ε > 0
and any x ∈ R+ you can indeed find a δ > 0 such that |x − x0| < δ implies
| 1x −

1
x0
| < ε. But as x gets smaller and smaller, closer to 0, the value of δ must

get smaller too. This shows there can be no fixed positive δ > 0 that works for
all x ∈ R+.

In the problem you will prove the Heine-Cantor theorem. If (X, dX) is a compact
metric space, if (Y, dY ) is a metric space, and if f : X → Y is continuous, then
f is uniformly continuous.

� (2 Points) Let ε > 0. By continuity, for all x ∈ X, there is a δx > 0
such that x0 ∈ X and dX(x, x0) < δx implies dY

(
f(x), f(x0)

)
< ε. Let

Ux = B
(X, dX)
δx/2

(x) and O = {Ux | x ∈ X }. Show that O is an open cover

of X.

� (2 Points) We proved that (X, dX) is compact if and only if every open
cover O has a finite subcover ∆ ⊆ O. Write ∆ = {Ua0 , . . . , UaN }. Let
δ = 1

2min(δa0 , . . . , δaN ). Show that if x, x0 ∈ X and dX(x, x0) < δ, then

there is an an such that x, x0 ∈ B(X, d)
δan

(an) [Hint: The triangle inequality
is always your friend.]

� (3 Points) Conclude that f is uniformly continuous.

Bonus: (4 Points) Prove that if (X, d) is a compact metric space, and f : X →
R is continuous (with the standard metric on R), then f is bounded. That is,
there is an M ∈ R such that for all x ∈ X we have |f(x)| < M .
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Solution. For all U ∈ O, U is an open ball, and hence open. But moreover, for

all x ∈ X, since δx is chosen to be positive, we have that B
(X, d)
δx

(x) is non-empty
since it contains the point x. Since this is true of all x ∈ X, O is a collection of
open sets that cover X, and is therefore an open cover.

Let x, x0 ∈ X be such that dX(x, x0) < δ. Since ∆ is a cover of X there is a

Un ∈ ∆ such that x ∈ Un. But Un = B
(X, d)
δan/2

(an), so dX(x, an) < δan/2. But

then, by the triangle inequality, we have:

dX(x0, an) ≤ dX(x0, x) + dX(x, an) < δ +
δan
2
≤ δan

2
+
δan
2

= δan (21)

by the definition of δ. So x, x0 ∈ B(X, d)
δan

(an).

Let x, x0 ∈ X with dX(x, x0) < δ. Then there is an an such that x, x0 ∈
B

(X, d)
δan

(an). But then:

dY
(
f(x), f(x0)

)
≤ dY

(
f(x), f(an)

)
+ dY

(
f(x0), f(an)

)
< ε+ ε = 2ε (22)

Since 2ε can be made arbitrarily small, and since δ was chosen independent of
x, f is uniformly continuous.

For the bonus, suppose f is not bounded. Then for all M ∈ R there is an x ∈ X
such that |f(x)| ≥M . In particular, for all n ∈ N there is an an ∈ X such that
|f(an)| ≥ n. But then a : N → X is a sequence in a compact metric space, so
there is a convergent subsequence ak. Let x ∈ X be the limit, akn → x. But
f is continuous, so if akn → x, then f(akn) → f(x). Let N ∈ N be such that
N > |f(x)|+ 1. But then for all n ∈ N with n > N we have |f(x)−f(akn)| > 1,
so f(akn) can’t converge to f(x), a contradiction. So f is bounded.
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Problem 5 (Topological Spaces)

You may freely use the following fact. If f : R → R is a non-zero polynomial,
then there are only finitely many numbers x ∈ R such that f(x) = 0.

� (1 Point) State the definition of a topological space.

� (1 Point) State the definition of a Hausdorff topological space.

� (3 Points) Let (X, d) be a metric space and τd the metric topology. Prove
that (X, τd) is a Hausdorff topological space.

� (2 Points) Let τZ ⊆ P(R) be the set of all U ⊆ R such that there is a
polynomial f : R→ R with x ∈ R \ U if and only if f(x) = 0. Show that
τZ is a topology. This is the Zariski Topology on R.

� (2 Points) Show that (R, τZ) is not a Hausdorff topological space.

Solution. A topological space is a set X with a topology τ , which is a subset
τ ⊆ P(X) satisfying:

� ∅ ∈ τ

� X ∈ τ

� If U ,V ∈ τ , then U ∩ V ∈ τ .

� If O ⊆ τ , then
⋃
O ∈ τ .

A Hausdorff topological space is a topological space (X, τ) such that for all
x, y ∈ X with x 6= y there are open sets U ,V ∈ τ such that x ∈ U , y ∈ V, and
U ∩ V = ∅.

A metrizable space is Hausdorff. Let (X, τ) be metrizable, with metric d in-
ducing the topology τ . Let x, y ∈ X be distinct, x 6= y. Since d is a metric,

d(x, y) > 0. Let ε = 1
2d(x, y). Let U = B

(X, d)
ε (x) and V = B

(X, d)
ε (y). Then,

since open balls are open, U and V are elements of τ . Suppose z ∈ U ∩V. Then:

d(x, y) ≤ d(x, z) + d(z, y) < ε+ ε = d(x, y) (23)

so d(x, y) < d(x, y), a contradiction, and therefore U ∩ V = ∅. That is, (X, τ)
is Hausdorff.

The Zariski topology is a topology. The entire set is in it since f(x) = 1 is a
polynomial and f(x) = 0 if and only if x ∈ ∅. So R = R \ ∅ is an element
of τZ . Similarly, f(x) = 0 is a polynomial and f(x) = 0 for all x ∈ R, hence
∅ = R \ R is in τZ . Let U ,V ∈ τZ be open sets. Then there are polynomials f
and g corresponding to U and V, respectively. But the product of polynomials
is a polynomial, so h = fg is a polynomial. But then h(x) = 0 if and only if
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f(x)g(x) = 0. But f(x)g(x) = 0 if and only if f(x) = 0 or g(x) = 0 (Euclid’s
theorem). But then h(x) = 0 if and only if x ∈ R \ U or x ∈ R \ V. Thus
h(x) = 0 if and only if x ∈ R\(U ∩V), so U ∩V is open. Lastly, let O ⊆ τZ . If O
is empty, the union is empty, and the empty set is an element of τZ . If R ∈ O,
then

⋃
O = R, and R ∈ τZ . So suppose O is non-empty and R /∈ O. But then

every U ∈ O corresponds to a polynomial f where f(x) = 0 for at least some
x ∈ R. Let U ∈ O and let f be the corresponding polynomial. But then R \ U
is finite since a non-zero polynomial has only finitely many zeros. But then:

R \
⋃
O ⊆ R \ U (24)

So R \
⋃
O is finite. Let the elements be x0, . . . , xn. Let h(x) be defined by:

h(x) =

n∏
k=0

(x− xk) = (x− x0)(x− x1) · · · (x− xn) (25)

Then h(x) = 0 if and only if x ∈ R \
⋃
O. Hence

⋃
O is open.

(R, τZ) is not Hausdorff. Let U ,V be non-empty proper open subsets. Then,
since non-zero polynomials have only finitely many zeros, R \ U and R \ V are
finite. But then U ∩ V must be infinite since R is infinite, and hence (X, τZ)
can not be Hausdorff.
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