
Point-Set Topology: Homework 2

Summer 2022

Problem 1 A few more notes about metric spaces. A contraction on a metric
space (X, d) is a function f : X → X such that for all x, y ∈ X it is true that
d
(
f(x), f(y)

)
≤ r d(x, y) for some fixed 0 ≤ r < 1. This means the function f

squeezes the points together. You will prove one of the most celebrated theorems
of the theory of metric spaces, the Banach Fixed Point Theorem. If (X, d) is
a non-empty complete metric space, and if f : X → X is a contraction, then
there is a unique point x ∈ X such that f(x) = x. That is, f has a unique
fixed-point, a point that is not changed by f .

� (2 Points) Prove that a contraction f : X → X is continuous.

� (2 Points) Prove that if f : X → X has a fixed-point x ∈ X, then x is the
only fixed-point. [Hint: What if y ∈ X is another fixed-point? Anything
wrong?]

� (2 Points) Let a0 ∈ X be arbitrary, define an inductively via an+1 = f(an).
Prove that for all n ∈ N, d(an+1, an) ≤ rnd(a1, a0), where 0 ≤ r < 1 is a
value such that for all x, y ∈ X we have d

(
f(x), f(y)

)
≤ r d(x, y).

� (2 Points) Conclude that a : N → X is a Cauchy sequence. [Hint: Apply
the triangle inequality and use the geometric series from calculus].

� (2 Points) Since (X, d) is complete, the sequence converges. Let x ∈ X
be such that an → x. Show that f(x) = x. [Hint: Use the continuity of f
that you proved in the first part of this problem]

The first application of this is the Picard-Lindelöf theorem, a theorem with
widespread use in analysis, geometry, and physics. It says if f(t, x) is a nice
function (continuous in t, Lipschitz continuous in x) from some closed rectangle
R in R× Rn, if (t0, x0) ∈ R, then there is an ε > 0 and a unique function x(t)
such that:

x′(t) = f
(
t, x(t)

)
(1)

satisfying the initial value problem x(t0) = x0 in the interval (t0 − ε, t0 + ε). In
the single variable case, this implies we may solve ẋ(t) = f

(
t, x(t)

)
for smooth

functions f . The proof constructs the unique solution. Define ϕ0(t) = t0.
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Inductively define ϕn(t) via:

ϕn+1(t) = y0 +

∫ t

t0

f
(
s, ϕn(s)

)
ds (2)

The Banach fixed-point theorem shows, with a bit of work, that ϕn(t) converges
to a function and that this limit function satisfies the initial value problem.

Problem 2 A dense subset of a topological space (X, τ) is a subset A ⊆ X such
that Clτ (A) = X. That is, every point in X is a limit point of A. For example,
the rationals Q are a dense subset of the reals R. A Baire topological space is
a topological space (X, τ) such that for any non-empty countable set O ⊆ τ
with the property that U ∈ O implies U is dense, the intersection

⋂
O is also

dense. Here you will prove the first of Baire’s Category Theorems (Note: The
Baire category theorem has absolutely nothing to do with category theory. The
terminology for this theorem came long before category theory was initiated). If
(X, d) is a complete metric space, and if τd is the metric topology, then (X, τd)
is a Baire topological space.

� (2 Points) Prove that, for a topological space (Y, τY ), A ⊆ Y is dense if
and only if for every non-empty open set U ⊆ Y , the intersection U ∩A is
non-empty.

� (2 Points) It now suffices to prove that if W ⊆ X is open and non-empty,

thenW∩
⋂
O is non-empty. Show that if V is an open ball, V = B

(X, d)
r (x),

then there is an ε > 0 such that Clτ
(
B

(X, d)
ε (x)

)
⊆ V. That is, there is

always a closed ball inside of an open ball.

� (2 Points) Since O is countable, there is a surjective sequence U : N → O.
That is, we may list the elements of O as U0, U1, and so on. Since U0

is open and dense, U0 ∩ W is non-empty. Hence there an a0 ∈ U0 ∩ W.
Since the intersection of open sets is open, there is a positive r0 < 1 such

that B
(X, d)
r0 (a0) ⊆ U0 ∩W. By the previous part of the problem, there is

a positive ε0 < r0 such that Clτd
(
B

(X, d)
ε0 (a0)

)
⊆ B

(X, d)
r0 (a0). Recursively

we may define an, rn, and εn such that rn < 1
n+1 , and:

Clτd
(
B(X, d)

εn (an)
)
⊆ B(X, d)

rn (an) ⊆ W ∩
n⋂

k=0

Un (3)

and such that:
Clτd

(
B(X, d)

εn+1
(an+1)

)
⊆ B(X, d)

εn (an) (4)

Show that a : N → X is a Cauchy sequence.

� (2 Points) Since (X, d) is complete, there is an x ∈ X such that an →
x. Show that for all n ∈ N it is true that x ∈ Un. [Hint: Since

Clτd
(
B

(X, d)
εn (an)

)
is closed, it contains all of its limit points. Show that

x is a limit point of this for all n. Conclude that x is in Un since

Clτd
(
B

(X, d)
εn (an)

)
⊆ Un.
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� (2 Points) Show that x ∈ W as well, and therefore x ∈ W ∩
⋂
O, proving

the intersection is non-empty, and therefore
⋂

O is dense.

Problem 3 From class, a Kolmogorov topology on a set X is a topology τ on
X such that for all x, y ∈ X, there is an open set U ∈ τ such that either x ∈ U
and y /∈ U , or x /∈ U and y ∈ U . That is, a Kolmogorov topology is a topology
where it is always possible to tell two points apart using open sets.

� (2 Points) There are 8,977,053,873,043 distinct topologies on the set Z10,
6,611,065,248,783 Kolmogorov topologies, and 4,717,687 topologies that
are not homeomorphic. Quite a lot. It would be cruel to ask you to find
them all. Instead, find all distinct topologies on Z2 (there are 4), all dis-
tinct Kolmogorov topologies (there’s 3), all non-homeomorphic topologies
(3), all non-homeomorphic Kolmogorov topologies (2), and all Hausdorff
topologies (1). [Hint: This may seem like a lot, but it really isn’t. Find
the 4 topologies on Z2. Then examine which are Kolmogorov and which
are homeomorphic, etc.]

� (2 Points) On Z3 there are 29 distinct topologies, 19 distinct Kolmogorov
topologies, 9 non-homeomorphic topologies, and 5 non-homeomorphic Kol-
mogorov topologies. Find 2 non-homeomorphic Kolmogorov topologies.
[Hint: Hausdorff implies Kolmogorov. Can you find the Hausdorff topol-
ogy?]

Problem 4 (4 Points) Let (X, τ) be a sequential topological space and R
an equivalence relation on X. Prove that the quotient space (X/R, τX/R) is
sequential as well.

Problem 5 Kazimeirz Kuratowski gave an alternative, but equivalent, def-
inition of topology. To him the notion of closure was sufficient to describe
topological spaces. A Kuratowski closure operator on a set X is a function
σ : P(X) → P(X) such that, for all A,B ⊆ X:

1. σ(∅) = ∅

2. A ⊆ σ(A)

3. σ(A) = σ
(
σ(A)

)
4. σ(A ∪B) = σ(A) ∪ σ(B)

A Kuratowski space is an ordered pair (X, σ) where X is a set and σ is a
Kuratowski closure operator on X. We have seen in class that, if (X, τ) is a
topological space, then Clτ is a Kuratowski closure operator. Now, let’s go the
other way.

� (2 Points) Show that, given (X, σ), the set τσ defined by:

τσ = {X \ C ∈ P(X) | σ(C) = C } (5)

is a topology on X. (We proved that, in topological spaces, A ⊆ X being
closed is equivalent to Clτ (A) = A. We are intuitively defining τσ as the
set of all complements of closed sets).
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� (6 Points) If (X, σX) and (Y, σY ) are Kuratowski spaces, f : X → Y is
continuous if for all A ⊆ X it is true that f [σX(A)] ⊆ σY (f [A]). Show
this is equivalent to continuity in topology. That is, if (X, τX) and (Y, τY )
are topological spaces, then f : X → Y is continuous if and only if for
all A ⊆ X it is true that f [ClτX (A)] ⊆ ClτY (f [A]). [Hint: We proved
f : X → Y is continuous if and only if for all closed D ⊆ Y , the pre-image
f−1[D] is closed. Use this definition.]
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