Point-Set Topology: Homework 2

Summer 2022

Problem 1 A few more notes about metric spaces. A contraction on a metric
space (X, d) is a function f : X — X such that for all z,y € X it is true that
d(f(z), f(y)) < rd(z, y) for some fixed 0 < r < 1. This means the function f
squeezes the points together. You will prove one of the most celebrated theorems
of the theory of metric spaces, the Banach Fized Point Theorem. If (X, d) is
a non-empty complete metric space, and if f : X — X is a contraction, then
there is a unique point € X such that f(xz) = x. That is, f has a unique
fized-point, a point that is not changed by f.

(2 Points) Prove that a contraction f: X — X is continuous.

(2 Points) Prove that if f: X — X has a fixed-point € X, then z is the
only fixed-point. [Hint: What if y € X is another fixed-point? Anything
wrong?]

¢ (2 Points) Let ap € X be arbitrary, define a,, inductively via a,+1 = f(an).
Prove that for all n € N, d(an41, an) < r"d(a1, ag), where 0 <r < 1lisa
value such that for all z,y € X we have d(f(z), f(y)) < rd(z, y).

e (2 Points) Conclude that a : N — X is a Cauchy sequence. [Hint: Apply
the triangle inequality and use the geometric series from calculus].

¢ (2 Points) Since (X, d) is complete, the sequence converges. Let x € X
be such that a,, — x. Show that f(z) = z. [Hint: Use the continuity of f
that you proved in the first part of this problem)]

The first application of this is the Picard-Lindeldf theorem, a theorem with
widespread use in analysis, geometry, and physics. It says if f(t, x) is a nice
function (continuous in ¢, Lipschitz continuous in x) from some closed rectangle
R in R x R™, if (t9, x0) € R, then there is an € > 0 and a unique function x(t)

such that:

x'(t) = f(t, x(t)) (1)
satisfying the initial value problem x(tg) = X in the interval (to — ¢, to+¢). In
the single variable case, this implies we may solve &(t) = f(¢, z(t)) for smooth
functions f. The proof constructs the unique solution. Define ¢o(t) = to.



Inductively define ¢, (t) via:

t

buna®) =m0+ [ (5. on(s)) ds (2
to

The Banach fixed-point theorem shows, with a bit of work, that ¢, (t) converges

to a function and that this limit function satisfies the initial value problem.

Problem 2 A dense subset of a topological space (X, 7) is a subset A C X such
that Cl,(A) = X. That is, every point in X is a limit point of A. For example,
the rationals Q are a dense subset of the reals R. A Baire topological space is
a topological space (X, 7) such that for any non-empty countable set O C 7
with the property that &/ € O implies U is dense, the intersection (O is also
dense. Here you will prove the first of Baire’s Category Theorems (Note: The
Baire category theorem has absolutely nothing to do with category theory. The
terminology for this theorem came long before category theory was initiated). If
(X, d) is a complete metric space, and if 74 is the metric topology, then (X, 74)
is a Baire topological space.

e (2 Points) Prove that, for a topological space (Y, 7v), A C Y is dense if
and only if for every non-empty open set & C Y, the intersection U N A is
non-empty.

¢ (2 Points) It now suffices to prove that if W C X is open and non-empty,
then WN( O is non-empty. Show that if V is an open ball, V = BXd (2),
then there is an € > 0 such that Cl, (BéX’ d)(x)) C V. That is, there is
always a closed ball inside of an open ball.

e (2 Points) Since O is countable, there is a surjective sequence U : N — O.
That is, we may list the elements of O as Uy, Uy, and so on. Since Uy
is open and dense, Uy N W is non-empty. Hence there an ag € Uy N W.
Since the intersection of open sets is open, there is a positive ry < 1 such
that ij‘ 4 (ap) € Uy N W. By the previous part of the problem, there is

a positive g9 < ro such that Cl,, (ng( d) (ao)) C Bﬁi( d)(ao). Recursively

we may define a,,, 1, and &, such that r, < n%rl, and:
Cl, (B D (an)) € BEY(an) SWN [ Un, (3)
k=0
and such that:
Cly, (Béi&ii)(an—&-l)) - Béf’ d)(an) (4)

Show that a : N — X is a Cauchy sequence.

e (2 Points) Since (X, d) is complete, there is an z € X such that a, —
x. Show that for all n € N it is true that x € U,. [Hint: Since
Cl., (BéX 4 (an)) is closed, it contains all of its limit points. Show that
z is a limit point of this for all n. Conclude that x is in U, since
Cl,, (BEP(a,)) C Uy,



e (2 Points) Show that x € W as well, and therefore z € W N[ O, proving
the intersection is non-empty, and therefore () O is dense.

Problem 3 From class, a Kolmogorov topology on a set X is a topology 7 on
X such that for all z,y € X, there is an open set U € 7 such that either z € U
and y ¢ U, or x ¢ U and y € U. That is, a Kolmogorov topology is a topology
where it is always possible to tell two points apart using open sets.

¢ (2 Points) There are 8,977,053,873,043 distinct topologies on the set Z1g,
6,611,065,248,783 Kolmogorov topologies, and 4,717,687 topologies that
are not homeomorphic. Quite a lot. It would be cruel to ask you to find
them all. Instead, find all distinct topologies on Zy (there are 4), all dis-
tinct Kolmogorov topologies (there’s 3), all non-homeomorphic topologies
(3), all non-homeomorphic Kolmogorov topologies (2), and all Hausdorff
topologies (1). [Hint: This may seem like a lot, but it really isn’t. Find
the 4 topologies on Zs. Then examine which are Kolmogorov and which
are homeomorphic, etc.]

¢ (2 Points) On Zs there are 29 distinct topologies, 19 distinct Kolmogorov
topologies, 9 non-homeomorphic topologies, and 5 non-homeomorphic Kol-
mogorov topologies. Find 2 non-homeomorphic Kolmogorov topologies.
[Hint: Hausdorff implies Kolmogorov. Can you find the Hausdorff topol-
ogy’]
Problem 4 (4 Points) Let (X, 7) be a sequential topological space and R
an equivalence relation on X. Prove that the quotient space (X/R, 7x/g) is
sequential as well.

Problem 5 Kazimeirz Kuratowski gave an alternative, but equivalent, def-
inition of topology. To him the notion of closure was sufficient to describe
topological spaces. A Kuratowski closure operator on a set X is a function
o :P(X) — P(X) such that, for all A, B C X:

1. o0)=0

2. ACo(A)

3. o(A) =0o(c(4))

4. 0o(AUB)=0(A)Uo(B)

A Kuratowski space is an ordered pair (X, o) where X is a set and o is a
Kuratowski closure operator on X. We have seen in class that, if (X, 7) is a
topological space, then Cl. is a Kuratowski closure operator. Now, let’s go the
other way.

¢ (2 Points) Show that, given (X, o), the set 7, defined by:
T, ={X\CePX)|olC)=C} (5)

is a topology on X. (We proved that, in topological spaces, A C X being
closed is equivalent to Cl,(A) = A. We are intuitively defining 7, as the
set of all complements of closed sets).



e (6 Points) If (X, ox) and (Y, oy) are Kuratowski spaces, f : X — Y is
continuous if for all A C X it is true that flox(A4)] C oy (f[4]). Show
this is equivalent to continuity in topology. That is, if (X, 7x) and (Y, 7v)
are topological spaces, then f : X — Y is continuous if and only if for
all A C X it is true that f[Cl;,(A)] C Cl, (f[4]). [Hint: We proved
f: X — Y is continuous if and only if for all closed D C Y, the pre-image
f71[D] is closed. Use this definition.]



