
Point-Set Topology: Homework 4

Summer 2022

Problem 1 Locally compact has two meanings, unfortunately. And they are
not equivalent. To avoid ambiguity, some authors call one notion locally compact
and another notion strongly locally compact.

� Locally Compact Topological Space: A locally compact topological space
is a topological space (X, τ) such that for all x ∈ X there is an open set
U ∈ τ and a compact subset K ⊆ X such that x ∈ U and U ⊆ K.

� Strongly Locally Compact Topological Space: A strongly locally compact
topological space is a topological space (X, τ) such that for all x ∈ X
there is a neighborhood basis B of x such that for all U ∈ B, Clτ (U) is
compact.

Your task is to show there is no ambiguity in a Hausdorff space.

� (1 Point) Prove strongly locally compact implies locally compact (No
Hausdorffness needed).

� (3 Points) Prove that if (X, τ) is Hausdorff, then it is locally compact if
and only if it is strongly locally compact.

The only space I know of that is locally compact but not strongly locally com-
pact is the one point compactification of Q. This is compact, since it is a
compactification, and hence locally compact, but not strongly locally compact.
It is not Hausdorff, however.

Problem 2 You’ve tackled Baire’s first category theorem. Every completely
metrizable space (a space that comes from a complete metric) is a Baire space.
That is, the intersection of countably many open and dense subsets is still
dense. You will now prove Baire’s second category theorem, a locally compact
Hausdorff space is a Baire space.

� (2 Points) Prove that if (X, τ) is a topological space, and if for all n ∈ N,
Cn ⊆ X is a non-empty closed compact subset such that Cn+1 ⊆ Cn,
then

⋂
n∈N Cn is non-empty. [Hint: Contradiction works well here. If it is

empty, can you cover C0 with certain sets? Does this open cover have a
finite subcover?]
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� (2 Points) Prove that if (X, τ) is locally compact and Hausdorff, if x ∈ X,
and if U ∈ τ is such that x ∈ U , then there is a compact K ⊆ X and an
open V ∈ τ such that x ∈ V, V ⊆ K, and K ⊆ U . [Hint: Locally compact
Hausdorff implies regular.]

From here, the proof is a mimicry of the idea for completely metrizable spaces.
Given Un, n ∈ N, open and dense, and W ∈ τ non-empty, we construct nested
open sets Vn ⊆ W ∩

⋂n
k=0 Uk and compact nested non-empty sets Kn such that

Kn+1 ⊆ Vn. Using the intersection property of theKn, we concludeW∩
⋂
n∈N Uk

is non-empty, meaning
⋂
n∈N Un is dense. Note, the first Baire category theorem

is not stronger than the second Baire category theorem, and vice-versa. The
Paris plane is completely metrizable, but not locally compact. The long line is
locally compact and Hausdorff, but not paracompact, and hence not metrizable,
and hence not competely metrizable. Both theorems have separate applications
that make them equally useful.

Problem 3 Let (X, τ) be a topological space. Prove that if A ⊆ P(X) is
locally finite (that is, every point x ∈ X has an open set U ∈ τ such that x ∈ U
and U has non-empty intersection with only finitely many elements of A), then
the following are true:

� (2 Points) The set A′ defined by:

A′ = {Clτ (A) | A ∈ A} (1)

is locally finite as well.

� (2 Points)

Clτ

( ⋃
A∈A

A
)

=
⋃
A∈A

(
Clτ (A)

)
(2)

Note there is no requirement that A covers X, nor is there a requirement that
A consists of open sets. The only requirement is that the collection of sets is
locally finite.

Problem 4 Some definitions from class.

� Basis: A basis for a topological space (X, τ) is a subset B ⊆ τ such that
B is an open cover of X, and such that B generates τ and for all U ,V ∈ B
and for all x ∈ U ∩ V there is a W ∈ B such that x ∈ W and W ⊆ U ∩ V.

� Locally Finite Collection: A locally finite collection of sets in a topological
space (X, τ) is a set A ⊆ P(X) such that for all x ∈ X there is a U ∈ τ
such that x ∈ U and only finitely many elements of A have non-empty
intersection with U .

� σ Locally Finite Collection: A σ locally finite collection of sets in a topolog-
ical space (X, τ) is a set A ⊆ P(X) such that there exists countably many
sets An, each of which is locally finite in (X, τ), such that A =

⋃
n∈NAn.

2



� σ Locally Finite Basis: A σ locally finite basis of a topological space (X, τ)
is a basis B of τ such that B is σ locally finite.

� Locally Metrizable: A locally metrizable topological space is a topological
space (X, τ) such that for all x ∈ X there is a U ∈ τ such that x ∈ U and
(U , τU ) is metrizable, where τU is the subspace topology.

From class, the Nagata-Smirnov theorem says (X, τ) is metrizable if and only
if it is Hausdorff, regular, and has a σ locally finite basis. You may use this
freely. Smirnov’s Theorem: (X, τ) is metrizable if and only if it is Hausdorff,
paracompact, and locally metrizable. One direction has already been proved.
Metrizable implies Hausdorff, metrizable definitely implies locally metrizable
(for each x ∈ X pick U = X), and metrizable implies paracompact by Stone’s
theorem (from class). Prove the other direction. Let (X, τ) be Hausdorff, locally
metrizable, and paracompact. Prove it is metrizable.

� (1 Point) Why is (X, τ) regular?

� (1 Point) From being locally metrizable, there is an open cover O ⊆ τ
such that for all U ∈ O, (U , τU ) is metrizable. Why is there a locally
finite open refinement X of O that still covers X?

� (2 Points) Since the elements of X are subsets of elements of O, the ele-
ments of X are also metrizable (subspaces of metrizable spaces are metriz-
able). So for all U ∈ X there is a metric dU that induces the subspace

topology τU . Given x ∈ U and ε > 0, the open ball B
(U, dU )
ε (x) is open in

U . Why is it open in X?

� (1 Point) For all q ∈ Q+ let Aq be the set of all open balls of radius q
centered about all points x ∈ U for all U ∈ X . This is an open cover of X
for all q ∈ Q+. Again, for each q ∈ Q+ can you find a locally finite open
refinement Yq of Aq that covers X?

� (1 Points) Explain why Y =
⋃
q∈Q+ Yq is a σ locally finite open cover.

� (2 Points) We want to show Y is a basis for τ . Given x ∈ X and V ∈ τ with
x ∈ V, since X is locally finite, there are only finitely many sets U0, . . . , Un
in X that contain x. So V ∩ Uk is an open subset of Uk for all k ∈ Zn+1

that contains x, so there is an εk > 0 such that B
(Uk, dUk

)
εk (x) ⊆ V ∩ Uk.

Let q ∈ Q+ be less than min{ εk | k ∈ Zn+1 }/2. Since Yq covers X there
is a set W ∈ Yq such that x ∈ W. Since Yq is a refinement of Aq there is

an open ball B
(U, dU )
q (y) ∈ Aq that contains W. Show that U is actually

one of the sets U0, . . . , Un. [Hint: You just need to show that x ∈ U is
true].

� (2 Points) Conclude that W ⊆ V, so Y is a basis. Conclude that (X, τ) is
metrizable.
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Problem 5 (4 Points) The real projective space RPn is the quotient of Rn+1 \
{0 } by the equivalence relation yRx if and only if y = λx for some λ ∈ R\{ 0 }.
Equipped with the quotient topology, RPn is a topological manifold (this was
proven in class). Show that RPn is a compact topological manifold.

Problem 6 Prove that (X, τ) is a topological manifold if and only if it is locally
Euclidean, Hausdorff, and σ compact.

� (2 Points) Prove a metrizable Lindelöf space is second countable. [Hint:
For all n ∈ N, cover the space is 1/(n + 1) balls. Use Lindelöf to extract
a countable subcover Bn. Consider the collection of all such open sets for
all n ∈ N. Prove this is a countable basis.]

� (2 Points) σ compact implies Lindelöf. Using locally Euclidean, Haus-
dorff, and σ compact, prove (X, τ) is compactly exhaustible. From class,
a compactly exhaustible Hausdorff space is paracompact, hence (X, τ)
is a locally metrizable (since locally Euclidean), Hausdorff, paracompact
space, so by Smirnov’s theorem it is metrizable. The previous part of the
problem then shows that (X, τ) is second countable.

Problem 7 (12 Points) This can be quite tricky, so I’ve made the bounty 12
points. Hopefully this pleases the masses. Let (X, τ) be locally Euclidean (for
all x ∈ X there is an open set U ∈ τ , x ∈ U , and an injective continuous open
mapping f : U → Rn for some n ∈ N), Hausdorff, and connected (this last
part is very important). Prove (X, τ) is a topological manifold if and only if it
is paracompact. [Hint: All that is missing is second countability. Prove a locally
Euclidean, paracompact, connected, Hausdorff space is second countable.]

Problem 8 (2 Points) Think of a space (X, τ) that is locally Euclidean, Haus-
dorff, and paracompact, but not a manifold (Note: The assumption of con-
nectedness has been dropped). [Hint: Give R a topology that comes from a
particular metric. Problem 7 says the space better be disconnected.]
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