
Point-Set Topology: Homework 2

Summer 2022

Problem 1 A few more notes about metric spaces. A contraction on a metric
space (X, d) is a function f : X → X such that for all x, y ∈ X it is true that
d
(
f(x), f(y)

)
≤ r d(x, y) for some fixed 0 ≤ r < 1. This means the function f

squeezes the points together. You will prove one of the most celebrated theorems
of the theory of metric spaces, the Banach Fixed Point Theorem. If (X, d) is
a non-empty complete metric space, and if f : X → X is a contraction, then
there is a unique point x ∈ X such that f(x) = x. That is, f has a unique
fixed-point, a point that is not changed by f .

� (2 Points) Prove that a contraction f : X → X is continuous.

� (2 Points) Prove that if f : X → X has a fixed-point x ∈ X, then x is the
only fixed-point. [Hint: What if y ∈ X is another fixed-point? Anything
wrong?]

� (2 Points) Let a0 ∈ X be arbitrary, define an inductively via an+1 = f(an).
Prove that for all n ∈ N, d(an+1, an) ≤ rnd(a1, a0), where 0 ≤ r < 1 is a
value such that for all x, y ∈ X we have d

(
f(x), f(y)

)
≤ r d(x, y).

� (2 Points) Conclude that a : N → X is a Cauchy sequence. [Hint: Apply
the triangle inequality and use the geometric series from calculus].

� (2 Points) Since (X, d) is complete, the sequence converges. Let x ∈ X
be such that an → x. Show that f(x) = x. [Hint: Use the continuity of f
that you proved in the first part of this problem]

Solution. A contraction is continuous. Let a : N → X be a convergent sequence
and let x ∈ X be a limit of a. That is:

lim
n→∞

d(x, an) = 0 (1)

But since f is a contraction there is an r ∈ [0, 1) such that for all a, b ∈ X we
have d

(
f(a), f(b)

)
≤ r d(a, b). But then:

lim
n→∞

d
(
f(x), f(an)

)
≤ lim

n→∞
r d(x, an) = 0 (2)
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so f(an) → f(x), and therefore f is continuous.

If f : X → Y is a contraction, and if x ∈ X is a fixed-point, then it is the only
fixed-point. Suppose y ∈ X is a different fixed-point, x ̸= y. Then:

d(x, y) = d
(
f(x), f(y)

)
≤ r d(x, y) < d(x, y) (3)

so d(x, y) < d(x, y), which is a contradiction. So x is the unique fixed-point if
it exists.

We can prove d(an+1, an) ≤ rnd(a1, a0) by induction. The base case is true
since f is a contraction. That is:

d(a2, a1) = d
(
f(a1), f(a0)

)
≤ r d(a1, a0) (4)

Now suppose the claim is true for n ∈ N. We must prove this implies the claim
is true for n+ 1. We have:

d(an+2, an+1) = d
(
f(an+1), f(an)

)
≤ r d(an+1, an) ≤ rn+1d(a1, a0) (5)

where this last inequality follows from the induction hypothesis. Therefore, by
the principle of induction, the claim is true for all n ∈ N.

This inequality can be used to prove that a : N → X is a Cauchy sequence.
Repeatedly using the triangle inequality, if m,n ∈ N and m < n, we have:

d(am, an) ≤ d(am, am+1) + d(am+1, an) (6)

≤ d(am, am+1) + d(am+1, am+2) + d(am+2, an) (7)

Inductively we obtain:

d(am, an) ≤
n−1∑
k=m

d(ak, ak+1) (8)

Invoking the inequality we just proved, we get:

d(am, an) ≤
n−1∑
k=m

d(ak, ak+1) ≤
n−1∑
k=m

rk d(a0, a1) (9)

We can simplify this and use the geometric series.

d(am, an) ≤
n−1∑
k=m

rk d(a0, a0) (10)

= d(a0, a1)

n−1∑
k=m

rk (11)

≤ d(a0, a1)

∞∑
k=m

rk (12)

= d(a0, a1)
rm

1− r
(13)
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But 0 ≤ r < 1, so rm converges to zero. Given ε > 0, choose N such that

d(a0, a1)
rN

1−r < ε/2. Then, choosing m,n > N , we get d(am, an) < ε showing
us that a is a Cauchy sequence.

Since (X, d) is complete, there is some x ∈ X such that an → x. But then,
since f is continuous, we have:

x = lim
n→∞

an+1 (14)

= lim
n→∞

f(an) (15)

= f
(
lim
n→∞

an
)

(16)

= f(x) (17)

so x is a fixed-point.
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Problem 2 A dense subset of a topological space (X, τ) is a subset A ⊆ X such
that Clτ (A) = X. That is, every point in X is a limit point of A. For example,
the rationals Q are a dense subset of the reals R. A Baire topological space is
a topological space (X, τ) such that for any non-empty countable set O ⊆ τ
with the property that U ∈ O implies U is dense, the intersection

⋂
O is also

dense. Here you will prove the first of Baire’s Category Theorems (Note: The
Baire category theorem has absolutely nothing to do with category theory. The
terminology for this theorem came long before category theory was initiated). If
(X, d) is a complete metric space, and if τd is the metric topology, then (X, τd)
is a Baire topological space.

� (2 Points) Prove that, for a topological space (Y, τY ), A ⊆ Y is dense if
and only if for every non-empty open set U ⊆ Y , the intersection U ∩A is
non-empty.

� (2 Points) It now suffices to prove that if W ⊆ X is open and non-empty,

thenW∩
⋂
O is non-empty. Show that if V is an open ball, V = B

(X, d)
r (x),

then there is an ε > 0 such that Clτ
(
B

(X, d)
ε (x)

)
⊆ V. That is, there is

always a closed ball inside of an open ball.

� (2 Points) Since O is countable, there is a surjective sequence U : N → O.
That is, we may list the elements of O as U0, U1, and so on. Since U0

is open and dense, U0 ∩ W is non-empty. Hence there an a0 ∈ U0 ∩ W.
Since the intersection of open sets is open, there is a positive r0 < 1 such

that B
(X, d)
r0 (a0) ⊆ U0 ∩W. By the previous part of the problem, there is

a positive ε0 < r0 such that Clτd
(
B

(X, d)
ε0 (a0)

)
⊆ B

(X, d)
r0 (a0). Recursively

we may define an, rn, and εn such that rn < 1
n+1 , and:

Clτd
(
B(X, d)

εn (an)
)
⊆ B(X, d)

rn (an) ⊆ W ∩
n⋂

k=0

Un (18)

and such that:
Clτd

(
B(X, d)

εn+1
(an+1)

)
⊆ B(X, d)

εn (an) (19)

Show that a : N → X is a Cauchy sequence.

� (2 Points) Since (X, d) is complete, there is an x ∈ X such that an →
x. Show that for all n ∈ N it is true that x ∈ Un. [Hint: Since

Clτd
(
B

(X, d)
εn (an)

)
is closed, it contains all of its limit points. Show that

x is a limit point of this for all n. Conclude that x is in Un since

Clτd
(
B

(X, d)
εn (an)

)
⊆ Un.

� (2 Points) Show that x ∈ W as well, and therefore x ∈ W ∩
⋂

O, proving
the intersection is non-empty, and therefore

⋂
O is dense.

Solution. Suppose A ⊆ Y is dense. Let U ∈ τY be non-empty and suppose
A ∩ U = ∅. Then Y \ U is a closed set that contains A. But then, since
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A ⊆ Y \ U , and since Y \ U is closed, we have Clτ (A) ⊆ Y \ U . But this is a
contradiction since A is dense, meaning Clτ (A) = Y , but U is non-empty, so
Y \ U ̸= Y . Hence, A ∩ U is non-empty.

Now, suppose for every non-empty U ∈ τY we have that A ∩ U ≠ ∅. Suppose
y ∈ Y is such that y /∈ Clτ (A). Then, by the definition of closure, there is a
closed set C ⊆ Y such that Clτ (A) ⊆ C and y /∈ C. But if C is closed, then Y \ C
is open. But since Clτ (A) ⊆ C and A ⊆ Clτ (A), we have that A ∩ (Y \ C) = ∅.
But Y \ C is non-empty since y ∈ Y \ C. But all non-empty open subsets of Y
have non-empty intersection with A, which is a contradiction. So A is dense.

The closure of an open ball is contained in a closed ball. The closed ball of
radius ε in (X, d) centered at x ∈ X is defined by:

B(X, d)
ε (x) = { y ∈ X | d(x, y) ≤ ε } (20)

Slight change from the open ball, we’ve replaced < with ≤ in the definition.

Firstly, closed balls are closed. Given ε > 0, x ∈ X, and y /∈ B
(X, d)
ε (x), choose

r = d(x, y)− ε. Since y is not in the closed ball centered at x of radius ε we see

that d(x, y) > ε, so d(x, y)− ε is positive. Suppose z ∈ B
(X, d)
r (y) ∩B

(X, d)
ε (x).

Then:
d(x, y) ≤ d(x, z) + d(z, y) < ε+ d(x, y)− ε = d(x, y) (21)

so d(x, y) < d(x, y), which is a contradiction. Hence B
(X, d)
r (y)∩B

(X, d)
ε (x) = ∅.

But then the complement of B
(X, d)
ε (x) is open, meaning B

(X, d)
ε (x) is closed.

Given ε > 0, we then have:

B(X, d)
ε (x) ⊆ Clτ

(
B(X, d)

ε (x)
)
⊆ B(X, d)

ε (x) (22)

Choosing ε = r/2 we have:

Clτ
(
B(X, d)

ε (x)
)
⊆ B(X, d)

ε (x) ⊆ B(X, d)
r (x) (23)

NOTE: This does not reverse, in general. The closure of the open ball does
not need to be exactly the closed ball, just a subset of it. Take X to be any set
and d the discrete metric. Given x ∈ X, the open ball of radius 1 centered at x
is just {x }. There are no other points y with d(x, y) < 1. The closure of this
is also {x }. However, the closed ball of radius 1 is all of X. Every point y ∈ X
is such that d(x, y) ≤ 1.

The sequence a : N → X constructed is Cauchy. Given ε > 0, choose N ∈ N
such that N + 1 > 1/ε. Then, for m,n > N with m < n we have, since the
open balls are nested, the following:

d(am, an) <
1

m+ 1
<

1

N + 1
< ε (24)

so the sequence is Cauchy.
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Given N ∈ N, for n > N the points an lie entirely in Clτ
(
B

(X, d)
εn (an)

)
, which

is closed. Since it is a Cauchy sequence and (X, d) is complete, the sequence
converges. But closed sets contain their limit points, so the limit x is contained

in Clτ
(
B

(X, d)
εn (an)

)
. But Clτ

(
B

(X, d)
εn (an)

)
⊆ Un, so the limit is contained in Un

as well. Since this is true of all n ∈ N, we have that x ∈
⋂∞

n=0 Un =
⋂
O.

The closures of these open balls are also constructed so that they are contained
inside of W for each n ∈ N, see the recursive definition above. Meaning the
limit is also contained in W, and hence W ∩

⋂
O is non-empty.
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Problem 3 From class, a Kolmogorov topology on a set X is a topology τ on
X such that for all x, y ∈ X, there is an open set U ∈ τ such that either x ∈ U
and y /∈ U , or x /∈ U and y ∈ U . That is, a Kolmogorov topology is a topology
where it is always possible to tell two points apart using open sets.

� (2 Points) There are 8,977,053,873,043 distinct topologies on the set Z10,
6,611,065,248,783 Kolmogorov topologies, and 4,717,687 topologies that
are not homeomorphic. Quite a lot. It would be cruel to ask you to find
them all. Instead, find all distinct topologies on Z2 (there are 4), all dis-
tinct Kolmogorov topologies (there’s 3), all non-homeomorphic topologies
(3), all non-homeomorphic Kolmogorov topologies (2), and all Hausdorff
topologies (1). [Hint: This may seem like a lot, but it really isn’t. Find
the 4 topologies on Z2. Then examine which are Kolmogorov and which
are homeomorphic, etc.]

� (2 Points) On Z3 there are 29 distinct topologies, 19 distinct Kolmogorov
topologies, 9 non-homeomorphic topologies, and 5 non-homeomorphic Kol-
mogorov topologies. Find 2 non-homeomorphic Kolmogorov topologies.
[Hint: Hausdorff implies Kolmogorov. Can you find the Hausdorff topol-
ogy?]

Solution. The four topologies on Z2 are given pictorial in Fig. 1. They are the
indiscrete topology τ0 =

{
∅, Z2

}
, the topology τ1 =

{
∅, { 0 }, Z2

}
, the topol-

ogy τ2 =
{
∅, { 1 }, Z2

}
, and the discrete topology τ3 =

{
∅, { 0 }, { 1 }, Z2

}
.

All topologies but the indiscrete topology are Kolmogorov since all others can
topologically distinguish 0 and 1 via open sets. The indiscrete topology is not
Kolmogorov, that points 0 and 1 are topologically indistringuishable in this
topology. The topologies τ1 and τ2 are essentially the same, we’ve just rela-
belled 0 and 1, and indeed these topologies are homeomorphic on Z2. The
discrete topology is the only Hausdorff topology on Z2.

For Z3, we can use the fact that in a Hausdorff topological space singleton sets
{x } are closed. Since the finite union of closed sets is closed, the only Hausdorff
topology on a finite set is the discrete topology. So, P(Z3) is a Hausdorff, and
hence Kolmogorov, topology on Z3. We can find another by modifying an idea
from class. The topology generated on N by all sets of the form Zn with n ∈ N
can be modified to give a topology on Z3. Declare τ = {Z0, Z1, Z2, Z3 }. This is
a topology since the sets are all nested, so the intersection and union properties
are satisfied, but also ∅ = Z0 ∈ τ and Z3 ∈ τ . It is Kolmogorov as well. Given
m,n ∈ Z3 with m < n, m ∈ Zn but n /∈ Zn.
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Figure 1: Topologies on Z2
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Problem 4 (4 Points) Let (X, τ) be a sequential topological space and R
an equivalence relation on X. Prove that the quotient space (X/R, τX/R) is
sequential as well.

Solution. Suppose not and let Ũ ⊆ X/R be sequentially open but not open.
Let q : X → X/R be the quotient map, q(x) = [x]. Then, by the definition of
the quotient topology, q−1[Ũ ] is not open since Ũ is not open. Let U = q−1[Ũ ].
But (X, τ) is sequential, so if U is not open, then it is not sequentially open.
But then there is a convergent sequence a : N → X that converges to a point
x ∈ U such that for all N ∈ N there is an n ∈ N with n > N such that an /∈ U .
But the quotient map q is continuous, and continuous functions are sequentially
continuous, so if an → x, then q(an) → q(x). But then q(an) is a convergent
sequence in X/R that converges to a point q(x) ∈ Ũ . But Ũ is sequentially
open, so there is an N ∈ N such that for all n ∈ N with n > N it is true that
q(an) ∈ Ũ . But then, by the definition of pre-image, we have an ∈ U for all
n > N , a contradiction. Hence, Ũ is open and (X/R, τX/R) is sequential.
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Problem 5 Kazimeirz Kuratowski gave an alternative, but equivalent, def-
inition of topology. To him the notion of closure was sufficient to describe
topological spaces. A Kuratowski closure operator on a set X is a function
σ : P(X) → P(X) such that, for all A,B ⊆ X:

1. σ(∅) = ∅

2. A ⊆ σ(A)

3. σ(A) = σ
(
σ(A)

)
4. σ(A ∪B) = σ(A) ∪ σ(B)

A Kuratowski space is an ordered pair (X, σ) where X is a set and σ is a
Kuratowski closure operator on X. We have seen in class that, if (X, τ) is a
topological space, then Clτ is a Kuratowski closure operator. Now, let’s go the
other way.

� (2 Points) Show that, given (X, σ), the set τσ defined by:

τσ = {X \ C ∈ P(X) | σ(C) = C } (25)

is a topology on X. (We proved that, in topological spaces, A ⊆ X being
closed is equivalent to Clτ (A) = A. We are intuitively defining τσ as the
set of all complements of closed sets).

� (6 Points) If (X, σX) and (Y, σY ) are Kuratowski spaces, f : X → Y is
continuous if for all A ⊆ X it is true that f [σX(A)] ⊆ σY (f [A]). Show
this is equivalent to continuity in topology. That is, if (X, τX) and (Y, τY )
are topological spaces, then f : X → Y is continuous if and only if for
all A ⊆ X it is true that f [ClτX (A)] ⊆ ClτY (f [A]). [Hint: We proved
f : X → Y is continuous if and only if for all closed D ⊆ Y , the pre-image
f−1[D] is closed. Use this definition.]

Solution. As a consequence of σ(A ∪B) = σ(A) ∪ σ(B) we have that if A ⊆ B,
then σ(A) ⊆ σ(B). This is because, given A ⊆ B, we obtain:

σ(B) = σ(A ∪B) = σ(A) ∪ σ(B) (26)

so σ(A) ⊆ σ(B). The set τσ is indeed a topology. Firstly, ∅ ∈ τσ. Since
X ⊆ σ(X), and since σ(X) ⊆ X, we have that σ(X) = X, so ∅ = X \ X is
an element of τσ. Similarly, X ∈ τσ since σ(∅) = ∅, and hence X = X \ ∅ is
an element of τσ. Let U ,V ∈ τσ. Then U = X \ C and V = X \ D for sets C
and D such that σ(C) = C and σ(D) = D. But since σ is a Kuratowski closure
operator:

σ(C ∪ D) = σ(C) ∪ σ(D) = C ∪ D (27)

And hence X \ (C ∪ D) is an element of τσ. But by the De Morgan law:

X \ (C ∪ D) = (X \ C) ∩ (X \ D) = U ∩ V (28)
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so τσ is closed under the intersection of two elements. Lastly, let O ⊆ τσ. If
O is empty, then

⋃
O = ∅, and we’ve already shown that ∅ ∈ τσ. Suppose O

is non-empty. Then for all U ∈ O there is a C ⊆ X such that C = σ(C) and
U = X \ C. But then:

X \
⋃
U∈O

U =
⋂
U∈O

(
X \ U

)
=

⋂
C=X\U
U∈O

C (29)

To show that
⋃
O ∈ τσ we must show that:

σ
( ⋂

C=X\U
U∈O

C
)
=

⋂
C=X\U
U∈O

C (30)

For simplicity, let ∆ be the set of all X \ U , U ∈ O. We have
⋂
∆ ⊆ σ

(⋂
∆)

by the property of σ. We must show this reverses. Given any C ∈ ∆, by the
definition of intersection, we have

⋂
∆ ⊆ C. But then σ

(⋂
∆
)
⊆ σ(C). But

σ(C) = C for all C ∈ ∆. Hence:

σ
(⋂

∆
)
⊆

⋂
C∈∆

C =
⋂

∆ (31)

so σ
(⋂

∆
)
=

⋂
∆. Hence X \

⋂
∆ =

⋃
O is an element of τσ. All four criterion

are satisfied, so τσ is a topology.

Now to prove f : X → Y is continuous if and only if for all A ⊆ X we have
f
[
ClτX (A)

]
⊆ ClτY

(
f [A]

)
. Suppose f is continuous. Since ClτY

(
f [A]

)
is closed

and f is continuous, f−1
[
ClτY

(
f [A]

)]
is closed. But f [A] ⊆ ClτY

(
f [A]

)
, so:

A ⊆ f−1
[
f [A]

]
⊆ f−1

[
ClτY

(
f [A]

)]
(32)

Therefore:

ClτX (A) ⊆ ClτX

(
f−1

[
ClτY

(
f [A]

)])
= f−1

[
ClτY

(
f [A]

)]
(33)

where this last equality comes from the fact that f−1
[
ClτY

(
f [A]

)]
is closed,

since f is continuous, so it is is own closure. From this, we conclude:

f
[
ClτX (A)

]
⊆ ClτY

(
f [A]

)
(34)

Now, suppose for all A ⊆ X we have that f
[
ClτX (A)

]
⊆ ClτY

(
f [A]

)
. Let D ⊆ Y

be closed. Let C = f−1[D]. We must prove C is closed. That is, we must prove
ClτX (C) = C. It is automatic that C ⊆ ClτX (C), so we must prove ClτX (C) ⊆ C.
But:

f
[
ClτX (C)

]
⊆ ClτY

(
f [C]

)
= ClτY

(
f
[
f−1[D]

])
⊆ ClτY

(
D
)
= D (35)
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where we’ve used the fact that D is closed, and some of the basic laws of images
and pre-images. But then:

ClτX (C) ⊆ f−1
[
f
[
ClτX (C)

]]
⊆ f−1[D] = C (36)

so ClτX (C) ⊆ C, and hence C is closed. Thus, f is continuous.
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