Point-Set Topology: Homework 2

Summer 2022

Problem 1 A few more notes about metric spaces. A contraction on a metric
space (X, d) is a function f : X — X such that for all z,y € X it is true that
d(f(z), f(y)) < rd(z, y) for some fixed 0 < 7 < 1. This means the function f
squeezes the points together. You will prove one of the most celebrated theorems
of the theory of metric spaces, the Banach Fized Point Theorem. If (X, d) is
a non-empty complete metric space, and if f : X — X is a contraction, then
there is a unique point x € X such that f(x) = z. That is, f has a unique
fized-point, a point that is not changed by f.

(2 Points) Prove that a contraction f: X — X is continuous.

(2 Points) Prove that if f: X — X has a fixed-point € X, then z is the
only fixed-point. [Hint: What if y € X is another fixed-point? Anything
wrong?]

e (2 Points) Let ag € X be arbitrary, define a,, inductively via a,,+1 = f(an).
Prove that for all n € N, d(an41, a,) < r"d(a1, ag), where 0 < r < 1lisa
value such that for all z,y € X we have d(f(z), f(y)) < rd(z, y).

e (2 Points) Conclude that a : N — X is a Cauchy sequence. [Hint: Apply
the triangle inequality and use the geometric series from calculus].

e (2 Points) Since (X, d) is complete, the sequence converges. Let x € X
be such that a,, — z. Show that f(z) = . [Hint: Use the continuity of f
that you proved in the first part of this problem)]

Solution. A contraction is continuous. Let a : N — X be a convergent sequence
and let x € X be a limit of a. That is:

lim d(z, a,) =0 (1)
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But since f is a contraction there is an r € [0, 1) such that for all a,b € X we
have d(f(a), f(b)) < rd(a, b). But then:

lim d(f(z), f(an)) < lim rd(z, a,) =0 (2)
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so f(an) — f(x), and therefore f is continuous.

If f: X — Y is a contraction, and if z € X is a fixed-point, then it is the only
fixed-point. Suppose y € X is a different fixed-point,  # y. Then:

d(z, y) = d(f(2), f(y)) < rd(z,y) <d(z, y) (3)

so d(z, y) < d(z, y), which is a contradiction. So x is the unique fixed-point if
it exists.

We can prove d(an+1, an) < r"d(a1, ag) by induction. The base case is true
since f is a contraction. That is:

d(az, a1) = d(f(a1), f(a0)) < rd(a1, ag) (4)

Now suppose the claim is true for n € N. We must prove this implies the claim
is true for n + 1. We have:

d(an+27 an+1) = d<f<an+1)a f(an)) S Td(an+la an) S rn+1d(a17 aO) (5)
where this last inequality follows from the induction hypothesis. Therefore, by
the principle of induction, the claim is true for all n € N.

This inequality can be used to prove that ¢ : N — X is a Cauchy sequence.

Repeatedly using the triangle inequality, if m,n € N and m < n, we have:

d(ama an) < d(a'mv am—i—l) + d(am+17 a”ﬂ) (6)
S d(am7 aerl) + d(am+17 am+2) + d(am+27 a’n) (7)

Inductively we obtain:

d(am, an) Z d(ak, ap+1) (8)

Invoking the inequality we just proved we get:

n—1
d(am, an) Z d(ay, ag1) < Y d(ag, a) 9)
k=m

We can simplify this and use the geometrlc series.

a)nu a’TL Z T d CLQ, a'O (10)

= d(agp, a1) i rk (11)
k=m

<d(ap, ar) Yy _ r* (12)
=

,,,m

= d(ao, a1)m



But 0 < r < 1, so r™ converges to zero. Given ¢ > 0, choose N such that
N

d(ao, a1){— < €/2. Then, choosing m,n > N, we get d(am, a,) < € showing

us that a is a Cauchy sequence.

Since (X, d) is complete, there is some = € X such that a,, — z. But then,
since f is continuous, we have:

T = nh_}rrgc Gl (14)

~ Tim_ f(a,) (15)

= f( lim a,) (16)

= f(@) (17)

so z is a fixed-point. O



Problem 2 A dense subset of a topological space (X, 7) is a subset A C X such
that Cl,(A) = X. That is, every point in X is a limit point of A. For example,
the rationals Q are a dense subset of the reals R. A Baire topological space is
a topological space (X, 7) such that for any non-empty countable set O C 7
with the property that &/ € O implies U is dense, the intersection (O is also
dense. Here you will prove the first of Baire’s Category Theorems (Note: The
Baire category theorem has absolutely nothing to do with category theory. The
terminology for this theorem came long before category theory was initiated). If
(X, d) is a complete metric space, and if 74 is the metric topology, then (X, 74)
is a Baire topological space.

e (2 Points) Prove that, for a topological space (Y, 7v), A C Y is dense if
and only if for every non-empty open set & C Y, the intersection U N A is
non-empty.

¢ (2 Points) It now suffices to prove that if W C X is open and non-empty,
then WN( O is non-empty. Show that if V is an open ball, V = B9 (x),
then there is an € > 0 such that CIT( §X’ d)(ac)) C V. That is, there is
always a closed ball inside of an open ball.

e (2 Points) Since O is countable, there is a surjective sequence U : N — O.
That is, we may list the elements of O as Uy, Uy, and so on. Since Uy
is open and dense, Uy N W is non-empty. Hence there an ag € Uy N W.
Since the intersection of open sets is open, there is a positive ry < 1 such

that B,(«f 9 (ap) € Uy N W. By the previous part of the problem, there is

a positive g9 < ro such that Cl,, (BéOX d) (ao)) C Bﬁf d)(ao). Recursively

we may define a,,, 1, and €, such that r, < %_H, and:
Cl;, (Béi,(’ d)(an)) C Bﬁf’ d)(an) cwn ﬂ U (18)
k=0
and such that:
Clyy (B D (a71)) € BED(a,) (19)

Show that a : N — X is a Cauchy sequence.

e (2 Points) Since (X, d) is complete, there is an x € X such that a,, —
x. Show that for all n € N it is true that = € U,,. [Hint: Since

Cl,, (Béf 4 (an)) is closed, it contains all of its limit points. Show that
x is a limit point of this for all n. Conclude that = is in U,, since

L, (B (an)) € Uy,
e (2 Points) Show that x € W as well, and therefore z € W N () O, proving

the intersection is non-empty, and therefore () O is dense.

Solution. Suppose A C Y is dense. Let U € 7y be non-empty and suppose
ANU = 0. Then Y \ U is a closed set that contains A. But then, since



A CY\U, and since Y \ U is closed, we have Cl.(4) C Y \ Y. But this is a
contradiction since A is dense, meaning Cl.(A) = Y, but U is non-empty, so
Y \U #Y. Hence, ANU is non-empty.

Now, suppose for every non-empty U € 7y we have that ANU # (. Suppose
y € Y is such that y ¢ Cl;(A4). Then, by the definition of closure, there is a
closed set C CY such that Cl.(A) C C and y ¢ C. But if C is closed, then Y\ C
is open. But since Cl.(A4) C C and A C Cl,(4), we have that AN (Y \ C) = 0.
But Y\ C is non-empty since y € Y \ C. But all non-empty open subsets of Y’
have non-empty intersection with A, which is a contradiction. So A is dense.

The closure of an open ball is contained in a closed ball. The closed ball of
radius ¢ in (X, d) centered at x € X is defined by:

B V() ={yeX|dzy)<c} (20)

Slight change from the open ball, we’'ve replaced < with < in the definition.
Firstly, closed balls are closed. Given ¢ >0, z € X, and y ¢ ng’ 9 (z), choose
r = d(x, y) —e. Since y is not in the closed ball centered at z of radius & we see
that d(z, y) > ¢, so d(x, y) — € is positive. Suppose z € BﬁX’ d) (y)N ng, 4 ().
Then:

d(;t, y) Sd(z7 Z)+d(zv y) <€—|—d(:€, y)—s:d(x, y) (21)
so d(z, y) < d(x, y), which is a contradiction. Hence B d)(y) nB& 9 (z) =0.
But then the complement of EéX’ d)(x) is open, meaning ng’ 4 (x) is closed.
Given € > 0, we then have:

BX D (z) C Cl (B D (2)) € B V() (22)

€

Choosing € = r/2 we have:
CL- (BY D (2)) € BE () € B V() (23)

NOTE: This does not reverse, in general. The closure of the open ball does
not need to be exactly the closed ball, just a subset of it. Take X to be any set
and d the discrete metric. Given x € X, the open ball of radius 1 centered at x
is just {x}. There are no other points y with d(x, y) < 1. The closure of this
is also { # }. However, the closed ball of radius 1 is all of X. Every point y € X
is such that d(z, y) < 1.

The sequence a : N — X constructed is Cauchy. Given € > 0, choose N € N
such that N +1 > 1/e. Then, for m,n > N with m < n we have, since the
open balls are nested, the following:

1

d(am, — = <7
(am a")<m+l<N+1<€

(24)

so the sequence is Cauchy.



X, d)

n

Given N € N, for n > N the points a,, lie entirely in Cl, (Bé (an))7 which
is closed. Since it is a Cauchy sequence and (X, d) is complete, the sequence
converges. But closed sets contain their limit points, so the limit x is contained
in Cl, (Bé,)f 4 (an)). But Cl, (B,gf 9 (an)) C U, so the limit is contained in U,
as well. Since this is true of all n € N, we have that z € (), U, = O.

The closures of these open balls are also constructed so that they are contained
inside of W for each n € N, see the recursive definition above. Meaning the
limit is also contained in W, and hence W N[ O is non-empty. O



Problem 3 From class, a Kolmogorov topology on a set X is a topology 7 on
X such that for all z,y € X, there is an open set U € 7 such that either z € U
and y ¢ U, or x ¢ U and y € U. That is, a Kolmogorov topology is a topology
where it is always possible to tell two points apart using open sets.

¢ (2 Points) There are 8,977,053,873,043 distinct topologies on the set Z1g,
6,611,065,248,783 Kolmogorov topologies, and 4,717,687 topologies that
are not homeomorphic. Quite a lot. It would be cruel to ask you to find
them all. Instead, find all distinct topologies on Zy (there are 4), all dis-
tinct Kolmogorov topologies (there’s 3), all non-homeomorphic topologies
(3), all non-homeomorphic Kolmogorov topologies (2), and all Hausdorff
topologies (1). [Hint: This may seem like a lot, but it really isn’t. Find
the 4 topologies on Zs. Then examine which are Kolmogorov and which
are homeomorphic, etc.]

e (2 Points) On Zs there are 29 distinct topologies, 19 distinct Kolmogorov
topologies, 9 non-homeomorphic topologies, and 5 non-homeomorphic Kol-
mogorov topologies. Find 2 non-homeomorphic Kolmogorov topologies.
[Hint: Hausdorff implies Kolmogorov. Can you find the Hausdorff topol-

ogy?]

Solution. The four topologies on Zy are given pictorial in Fig. 1. They are the
indiscrete topology 79 = { 0, Zs }, the topology 71 = {0, {0}, Zs }, the topol-
ogy 2 = {0, {1}, Zs }, and the discrete topology 73 = {0, {0}, {1}, Zs }.
All topologies but the indiscrete topology are Kolmogorov since all others can
topologically distinguish 0 and 1 via open sets. The indiscrete topology is not
Kolmogorov, that points 0 and 1 are topologically indistringuishable in this
topology. The topologies 7 and 7o are essentially the same, we’ve just rela-
belled 0 and 1, and indeed these topologies are homeomorphic on Zy. The
discrete topology is the only Hausdorff topology on Zs.

For Z3, we can use the fact that in a Hausdorff topological space singleton sets
{z } are closed. Since the finite union of closed sets is closed, the only Hausdorff
topology on a finite set is the discrete topology. So, P(Z3) is a Hausdorff, and
hence Kolmogorov, topology on Zs. We can find another by modifying an idea
from class. The topology generated on N by all sets of the form Z, with n € N
can be modified to give a topology on Zs. Declare T = { Zo, Z1, Z2, Z3 }. This is
a topology since the sets are all nested, so the intersection and union properties
are satisfied, but also ) = Zg € 7 and Z3 € 7. It is Kolmogorov as well. Given
m,n € Zs with m < n, m € Z,, but n ¢ Z,. O



Figure 1: Topologies on Zso



Problem 4 (4 Points) Let (X, 7) be a sequential topological space and R
an equivalence relation on X. Prove that the quotient space (X/R, 7x/g) is
sequential as well.

Solution. Suppose not and let Ucx /R be sequentially open but not open.
Let ¢ : X — X/R be the quotient map, ¢(x) = [z]. Then, by the definition of
the quotient topology, ¢~ ![] is not open since I is not open. Let U = ¢~ [U].
But (X, 7) is sequential, so if &/ is not open, then it is not sequentially open.
But then there is a convergent sequence a : N — X that converges to a point
x € U such that for all N € N there is an n € N with n > N such that a,, ¢ U.
But the quotient map ¢ is continuous, and continuous functions are sequentially
continuous, so if a, — x, then ¢(a,) — ¢(z). But then ¢(a,) is a convergent
sequence in X/R that converges to a point ¢(x) € Y. But U is sequentially
open, so there is an N € N such that for all n € N with n > N it is true that
q(an) € U. But then, by the definition of pre-image, we have a, € U for all
n > N, a contradiction. Hence, U is open and (X/R, TX/R) is sequential. O



Problem 5 Kazimeirz Kuratowski gave an alternative, but equivalent, def-
inition of topology. To him the notion of closure was sufficient to describe
topological spaces. A Kuratowski closure operator on a set X is a function
o :P(X) — P(X) such that, for all A, B C X:

1. o0)=0

2. ACo(4)

3. 0(A) =o(a(4))

4. 0(AUB)=0(A)Uo(B)

A Kuratowski space is an ordered pair (X, o) where X is a set and o is a
Kuratowski closure operator on X. We have seen in class that, if (X, 7) is a
topological space, then Cl; is a Kuratowski closure operator. Now, let’s go the
other way.

e (2 Points) Show that, given (X, o), the set 7, defined by:
T, ={X\CePX)|olC)=C} (25)

is a topology on X. (We proved that, in topological spaces, A C X being
closed is equivalent to Cl.(A) = A. We are intuitively defining 7, as the
set of all complements of closed sets).

e (6 Points) If (X, ox) and (Y, oy) are Kuratowski spaces, f: X — Y is
continuous if for all A C X it is true that flox(A4)] C oy (f[A]). Show
this is equivalent to continuity in topology. That is, if (X, 7x) and (Y, 7v)
are topological spaces, then f : X — Y is continuous if and only if for
all A C X it is true that f[Cl.(A)] C Cl., (f[4]). [Hint: We proved
f X =Y is continuous if and only if for all closed D C Y, the pre-image
f71D] is closed. Use this definition.]

Solution. As a consequence of 0(AU B) = 0(A) Uo(B) we have that if A C B,
then o(A) C o(B). This is because, given A C B, we obtain:

o(B)=0(AUB)=0(A)Uo(B) (26)

so 0(A) C o(B). The set 7, is indeed a topology. Firstly, # € 7,. Since
X C o(X), and since o(X) C X, we have that o(X) = X, s0 0 = X \ X is
an element of 7,. Similarly, X € 7, since o() = 0, and hence X = X \ 0 is
an element of 7,. Let U,V € 7,. Then Y = X \C and ¥V = X \ D for sets C
and D such that o(C) = C and (D) = D. But since o is a Kuratowski closure
operator:

oc(CUD)=0c(C)Uc(D)=CUD (27)

And hence X \ (CUD) is an element of 7,. But by the De Morgan law:

X\ (CUD)=(X\CO)N(X\D)=UNYV (28)
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S0 T, is closed under the intersection of two elements. Lastly, let O C 7. If
O is empty, then |JO = 0, and we’ve already shown that § € 7,. Suppose O
is non-empty. Then for all 4 € O there is a C C X such that C = ¢(C) and
U =X \C. But then:

x\Ju=Nx\u)y= () ¢ (29)

Uueo UeO c=x\U
Ueo

To show that | JO € 7, we must show that:

o Ne)=Nc¢ (30)

c=x\U c=x\U
Ueo Ueco

For simplicity, let A be the set of all X \U, U € O. We have A C (N A)
by the property of 0. We must show this reverses. Given any C € A, by the
definition of intersection, we have (YA C C. But then o((NA) C ¢(C). But
o(C) =C for all C € A. Hence:

o(Na)cNe=Na (31)

ceA

soo(MNA) =A. Hence X \(NA = JO is an element of 7,. All four criterion
are satisfied, so 7, is a topology.

Now to prove f : X — Y is continuous if and only if for all A C X we have
f[Cl (A)] C Cly, (f[A]). Suppose f is continuous. Since Cl., (f[A]) is closed

and f is continuous, f~! [CITY (f[A])} is closed. But f[A] C Cl., (f[A]), so:
AC AT € £y (7147 (32)

Therefore:
Clry (4) € Clry (f‘l e, (f[ADD = o (sl ©3)

where this last equality comes from the fact that f—! {ClTY ( f [A])] is closed,

since f is continuous, so it is is own closure. From this, we conclude:

F[Clx (4)] € Cl, (£14]) (34)

Now, suppose for all A C X we have that f[Cl., (A)] C Cl., (f[A]). Les DCY
be closed. Let C = f~1[D]. We must prove C is closed. That is, we must prove
Cl. (C) =C. Tt is automatic that C C Cl,, (C), so we must prove Cl,, (C) C C.
But:

F[CLy (€)] € Cley (f1€]) = Cloy (/' [P]]) S Ly (D) =D (35)
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where we’ve used the fact that D is closed, and some of the basic laws of images
and pre-images. But then:

Cle(€) € f[f[Clc(0)]] € £l =C (36)

so Cl., (C) C C, and hence C is closed. Thus, f is continuous. O
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