Point-Set Topology: Homework 2

Summer 2022

Problem 1 A few more notes about metric spaces. A *contraction* on a metric space (X, d) is a function $f : X \to X$ such that for all $x, y \in X$ it is true that $d(f(x), f(y)) \leq r d(x, y)$ for some fixed $0 \leq r < 1$. This means the function f squeezes the points together. You will prove one of the most celebrated theorems of the theory of metric spaces, the *Banach Fixed Point Theorem*. If (X, d) is a non-empty complete metric space, and if $f : X \to X$ is a contraction, then there is a unique point $x \in X$ such that f(x) = x. That is, f has a unique fixed-point, a point that is not changed by f.

- (2 Points) Prove that a contraction $f: X \to X$ is continuous.
- (2 Points) Prove that if $f: X \to X$ has a fixed-point $x \in X$, then x is the only fixed-point. [Hint: What if $y \in X$ is another fixed-point? Anything wrong?]
- (2 Points) Let $a_0 \in X$ be arbitrary, define a_n inductively via $a_{n+1} = f(a_n)$. Prove that for all $n \in \mathbb{N}$, $d(a_{n+1}, a_n) \leq r^n d(a_1, a_0)$, where $0 \leq r < 1$ is a value such that for all $x, y \in X$ we have $d(f(x), f(y)) \leq r d(x, y)$.
- (2 Points) Conclude that $a : \mathbb{N} \to X$ is a Cauchy sequence. [Hint: Apply the triangle inequality and use the geometric series from calculus].
- (2 Points) Since (X, d) is complete, the sequence converges. Let $x \in X$ be such that $a_n \to x$. Show that f(x) = x. [Hint: Use the continuity of f that you proved in the first part of this problem]

Solution. A contraction is continuous. Let $a : \mathbb{N} \to X$ be a convergent sequence and let $x \in X$ be a limit of a. That is:

$$\lim_{n \to \infty} d(x, a_n) = 0 \tag{1}$$

But since f is a contraction there is an $r \in [0, 1)$ such that for all $a, b \in X$ we have $d(f(a), f(b)) \leq r d(a, b)$. But then:

$$\lim_{n \to \infty} d(f(x), f(a_n)) \le \lim_{n \to \infty} r d(x, a_n) = 0$$
(2)

so $f(a_n) \to f(x)$, and therefore f is continuous.

If $f: X \to Y$ is a contraction, and if $x \in X$ is a fixed-point, then it is the only fixed-point. Suppose $y \in X$ is a different fixed-point, $x \neq y$. Then:

$$d(x, y) = d(f(x), f(y)) \le r d(x, y) < d(x, y)$$
(3)

so d(x, y) < d(x, y), which is a contradiction. So x is the unique fixed-point if it exists.

We can prove $d(a_{n+1}, a_n) \leq r^n d(a_1, a_0)$ by induction. The base case is true since f is a contraction. That is:

$$d(a_2, a_1) = d(f(a_1), f(a_0)) \le r \, d(a_1, a_0) \tag{4}$$

Now suppose the claim is true for $n \in \mathbb{N}$. We must prove this implies the claim is true for n + 1. We have:

$$d(a_{n+2}, a_{n+1}) = d(f(a_{n+1}), f(a_n)) \le r \, d(a_{n+1}, a_n) \le r^{n+1} d(a_1, a_0) \tag{5}$$

where this last inequality follows from the induction hypothesis. Therefore, by the principle of induction, the claim is true for all $n \in \mathbb{N}$.

This inequality can be used to prove that $a : \mathbb{N} \to X$ is a Cauchy sequence. Repeatedly using the triangle inequality, if $m, n \in \mathbb{N}$ and m < n, we have:

$$d(a_m, a_n) \le d(a_m, a_{m+1}) + d(a_{m+1}, a_n) \tag{6}$$

$$\leq d(a_m, a_{m+1}) + d(a_{m+1}, a_{m+2}) + d(a_{m+2}, a_n) \tag{7}$$

Inductively we obtain:

$$d(a_m, a_n) \le \sum_{k=m}^{n-1} d(a_k, a_{k+1})$$
(8)

Invoking the inequality we just proved, we get:

$$d(a_m, a_n) \le \sum_{k=m}^{n-1} d(a_k, a_{k+1}) \le \sum_{k=m}^{n-1} r^k d(a_0, a_1)$$
(9)

We can simplify this and use the geometric series.

$$d(a_m, a_n) \le \sum_{k=m}^{n-1} r^k \, d(a_0, a_0) \tag{10}$$

$$= d(a_0, a_1) \sum_{k=m}^{n-1} r^k$$
(11)

$$\leq d(a_0, a_1) \sum_{k=m}^{\infty} r^k \tag{12}$$

$$= d(a_0, a_1) \frac{r^m}{1-r}$$
(13)

But $0 \leq r < 1$, so r^m converges to zero. Given $\varepsilon > 0$, choose N such that $d(a_0, a_1) \frac{r^N}{1-r} < \varepsilon/2$. Then, choosing m, n > N, we get $d(a_m, a_n) < \varepsilon$ showing us that a is a Cauchy sequence.

Since (X, d) is complete, there is some $x \in X$ such that $a_n \to x$. But then, since f is continuous, we have:

$$x = \lim_{n \to \infty} a_{n+1} \tag{14}$$

$$=\lim_{n\to\infty}f(a_n)\tag{15}$$

$$=f\Big(\lim_{n\to\infty}a_n\Big)\tag{16}$$

$$=f(x) \tag{17}$$

so x is a fixed-point.

Problem 2 A dense subset of a topological space (X, τ) is a subset $A \subseteq X$ such that $\operatorname{Cl}_{\tau}(A) = X$. That is, every point in X is a limit point of A. For example, the rationals \mathbb{Q} are a dense subset of the reals \mathbb{R} . A Baire topological space is a topological space (X, τ) such that for any non-empty countable set $\mathcal{O} \subseteq \tau$ with the property that $\mathcal{U} \in \mathcal{O}$ implies \mathcal{U} is dense, the intersection $\bigcap \mathcal{O}$ is also dense. Here you will prove the first of Baire's Category Theorems (Note: The Baire category theorem has absolutely nothing to do with category theory. The terminology for this theorem came long before category theory was initiated). If (X, d) is a complete metric space, and if τ_d is the metric topology, then (X, τ_d) is a Baire topological space.

- (2 Points) Prove that, for a topological space (Y, τ_Y) , $A \subseteq Y$ is dense if and only if for every non-empty open set $\mathcal{U} \subseteq Y$, the intersection $\mathcal{U} \cap A$ is non-empty.
- (2 Points) It now suffices to prove that if $\mathcal{W} \subseteq X$ is open and non-empty, then $\mathcal{W} \cap \bigcap \mathcal{O}$ is non-empty. Show that if \mathcal{V} is an open ball, $\mathcal{V} = B_r^{(X,d)}(x)$, then there is an $\varepsilon > 0$ such that $\operatorname{Cl}_{\tau}(B_{\varepsilon}^{(X,d)}(x)) \subseteq \mathcal{V}$. That is, there is always a *closed ball* inside of an open ball.
- (2 Points) Since \mathcal{O} is countable, there is a surjective sequence $\mathcal{U} : \mathbb{N} \to \mathcal{O}$. That is, we may list the elements of \mathcal{O} as \mathcal{U}_0 , \mathcal{U}_1 , and so on. Since \mathcal{U}_0 is open and dense, $\mathcal{U}_0 \cap \mathcal{W}$ is non-empty. Hence there an $a_0 \in \mathcal{U}_0 \cap \mathcal{W}$. Since the intersection of open sets is open, there is a positive $r_0 < 1$ such that $B_{r_0}^{(X,d)}(a_0) \subseteq \mathcal{U}_0 \cap \mathcal{W}$. By the previous part of the problem, there is a positive $\varepsilon_0 < r_0$ such that $\operatorname{Cl}_{\tau_d}(B_{\varepsilon_0}^{(X,d)}(a_0)) \subseteq B_{r_0}^{(X,d)}(a_0)$. Recursively we may define a_n, r_n , and ε_n such that $r_n < \frac{1}{n+1}$, and:

$$\operatorname{Cl}_{\tau_d}\left(B_{\varepsilon_n}^{(X,\,d)}(a_n)\right) \subseteq B_{r_n}^{(X,\,d)}(a_n) \subseteq \mathcal{W} \cap \bigcap_{k=0}^n \mathcal{U}_n \tag{18}$$

and such that:

$$\operatorname{Cl}_{\tau_d}\left(B^{(X,d)}_{\varepsilon_{n+1}}(a_{n+1})\right) \subseteq B^{(X,d)}_{\varepsilon_n}(a_n)$$
(19)

Show that $a : \mathbb{N} \to X$ is a Cauchy sequence.

- (2 Points) Since (X, d) is complete, there is an $x \in X$ such that $a_n \to x$. Show that for all $n \in \mathbb{N}$ it is true that $x \in \mathcal{U}_n$. [Hint: Since $\operatorname{Cl}_{\tau_d}(B_{\varepsilon_n}^{(X,d)}(a_n))$ is closed, it contains all of its limit points. Show that x is a limit point of this for all n. Conclude that x is in \mathcal{U}_n since $\operatorname{Cl}_{\tau_d}(B_{\varepsilon_n}^{(X,d)}(a_n)) \subseteq \mathcal{U}_n$.
- (2 Points) Show that $x \in \mathcal{W}$ as well, and therefore $x \in \mathcal{W} \cap \bigcap \mathcal{O}$, proving the intersection is non-empty, and therefore $\bigcap \mathcal{O}$ is dense.

Solution. Suppose $A \subseteq Y$ is dense. Let $\mathcal{U} \in \tau_Y$ be non-empty and suppose $A \cap \mathcal{U} = \emptyset$. Then $Y \setminus \mathcal{U}$ is a closed set that contains A. But then, since

 $A \subseteq Y \setminus \mathcal{U}$, and since $Y \setminus \mathcal{U}$ is closed, we have $\operatorname{Cl}_{\tau}(A) \subseteq Y \setminus \mathcal{U}$. But this is a contradiction since A is dense, meaning $\operatorname{Cl}_{\tau}(A) = Y$, but \mathcal{U} is non-empty, so $Y \setminus \mathcal{U} \neq Y$. Hence, $A \cap \mathcal{U}$ is non-empty.

Now, suppose for every non-empty $\mathcal{U} \in \tau_Y$ we have that $A \cap \mathcal{U} \neq \emptyset$. Suppose $y \in Y$ is such that $y \notin \operatorname{Cl}_{\tau}(A)$. Then, by the definition of closure, there is a closed set $\mathcal{C} \subseteq Y$ such that $\operatorname{Cl}_{\tau}(A) \subseteq \mathcal{C}$ and $y \notin \mathcal{C}$. But if \mathcal{C} is closed, then $Y \setminus \mathcal{C}$ is open. But since $\operatorname{Cl}_{\tau}(A) \subseteq \mathcal{C}$ and $A \subseteq \operatorname{Cl}_{\tau}(A)$, we have that $A \cap (Y \setminus \mathcal{C}) = \emptyset$. But $Y \setminus \mathcal{C}$ is non-empty since $y \in Y \setminus \mathcal{C}$. But all non-empty open subsets of Y have non-empty intersection with A, which is a contradiction. So A is dense.

The closure of an open ball is contained in a closed ball. The closed ball of radius ε in (X, d) centered at $x \in X$ is defined by:

$$\overline{B}_{\varepsilon}^{(X,d)}(x) = \{ y \in X \mid d(x, y) \le \varepsilon \}$$
(20)

Slight change from the open ball, we've replaced < with \leq in the definition. Firstly, closed balls are closed. Given $\varepsilon > 0$, $x \in X$, and $y \notin \overline{B}_{\varepsilon}^{(X,d)}(x)$, choose $r = d(x, y) - \varepsilon$. Since y is not in the closed ball centered at x of radius ε we see that $d(x, y) > \varepsilon$, so $d(x, y) - \varepsilon$ is positive. Suppose $z \in B_r^{(X,d)}(y) \cap \overline{B}_{\varepsilon}^{(X,d)}(x)$. Then:

$$d(x, y) \le d(x, z) + d(z, y) < \varepsilon + d(x, y) - \varepsilon = d(x, y)$$
(21)

so d(x, y) < d(x, y), which is a contradiction. Hence $B_r^{(X, d)}(y) \cap \overline{B}_{\varepsilon}^{(X, d)}(x) = \emptyset$. But then the complement of $\overline{B}_{\varepsilon}^{(X, d)}(x)$ is open, meaning $\overline{B}_{\varepsilon}^{(X, d)}(x)$ is closed. Given $\varepsilon > 0$, we then have:

$$B_{\varepsilon}^{(X,d)}(x) \subseteq \operatorname{Cl}_{\tau}\left(B_{\varepsilon}^{(X,d)}(x)\right) \subseteq \overline{B}_{\varepsilon}^{(X,d)}(x)$$
(22)

Choosing $\varepsilon = r/2$ we have:

$$\operatorname{Cl}_{\tau}\left(B_{\varepsilon}^{(X,\,d)}(x)\right) \subseteq \overline{B}_{\varepsilon}^{(X,\,d)}(x) \subseteq B_{r}^{(X,\,d)}(x)$$
(23)

NOTE: This does not reverse, in general. The closure of the open ball does not need to be exactly the closed ball, just a subset of it. Take X to be any set and d the discrete metric. Given $x \in X$, the open ball of radius 1 centered at x is just $\{x\}$. There are no other points y with d(x, y) < 1. The closure of this is also $\{x\}$. However, the closed ball of radius 1 is all of X. Every point $y \in X$ is such that $d(x, y) \leq 1$.

The sequence $a : \mathbb{N} \to X$ constructed is Cauchy. Given $\varepsilon > 0$, choose $N \in \mathbb{N}$ such that $N + 1 > 1/\varepsilon$. Then, for m, n > N with m < n we have, since the open balls are nested, the following:

$$d(a_m, a_n) < \frac{1}{m+1} < \frac{1}{N+1} < \varepsilon \tag{24}$$

so the sequence is Cauchy.

Given $N \in \mathbb{N}$, for n > N the points a_n lie entirely in $\operatorname{Cl}_{\tau}(B_{\varepsilon_n}^{(X,d)}(a_n))$, which is closed. Since it is a Cauchy sequence and (X, d) is complete, the sequence converges. But closed sets contain their limit points, so the limit x is contained in $\operatorname{Cl}_{\tau}(B_{\varepsilon_n}^{(X,d)}(a_n))$. But $\operatorname{Cl}_{\tau}(B_{\varepsilon_n}^{(X,d)}(a_n)) \subseteq \mathcal{U}_n$, so the limit is contained in \mathcal{U}_n as well. Since this is true of all $n \in \mathbb{N}$, we have that $x \in \bigcap_{n=0}^{\infty} \mathcal{U}_n = \bigcap \mathcal{O}$.

The closures of these open balls are also constructed so that they are contained inside of \mathcal{W} for each $n \in \mathbb{N}$, see the recursive definition above. Meaning the limit is also contained in \mathcal{W} , and hence $\mathcal{W} \cap \bigcap \mathcal{O}$ is non-empty. \Box

Problem 3 From class, a Kolmogorov topology on a set X is a topology τ on X such that for all $x, y \in X$, there is an open set $\mathcal{U} \in \tau$ such that either $x \in \mathcal{U}$ and $y \notin \mathcal{U}$, or $x \notin \mathcal{U}$ and $y \in \mathcal{U}$. That is, a Kolmogorov topology is a topology where it is always possible to tell two points apart using open sets.

- (2 Points) There are 8,977,053,873,043 distinct topologies on the set Z₁₀, 6,611,065,248,783 Kolmogorov topologies, and 4,717,687 topologies that are not homeomorphic. Quite a lot. It would be cruel to ask you to find them all. Instead, find all distinct topologies on Z₂ (there are 4), all distinct Kolmogorov topologies (there's 3), all non-homeomorphic topologies (3), all non-homeomorphic Kolmogorov topologies (2), and all Hausdorff topologies (1). [Hint: This may seem like a lot, but it really isn't. Find the 4 topologies on Z₂. Then examine which are Kolmogorov and which are homeomorphic, etc.]
- (2 Points) On Z₃ there are 29 distinct topologies, 19 distinct Kolmogorov topologies, 9 non-homeomorphic topologies, and 5 non-homeomorphic Kolmogorov topologies. Find 2 non-homeomorphic Kolmogorov topologies. [Hint: Hausdorff implies Kolmogorov. Can you find the Hausdorff topology?]

Solution. The four topologies on \mathbb{Z}_2 are given pictorial in Fig. 1. They are the indiscrete topology $\tau_0 = \{\emptyset, \mathbb{Z}_2\}$, the topology $\tau_1 = \{\emptyset, \{0\}, \mathbb{Z}_2\}$, the topology $\tau_2 = \{\emptyset, \{1\}, \mathbb{Z}_2\}$, and the discrete topology $\tau_3 = \{\emptyset, \{0\}, \{1\}, \mathbb{Z}_2\}$. All topologies but the indiscrete topology are Kolmogorov since all others can topologically distinguish 0 and 1 via open sets. The indiscrete topology is not Kolmogorov, that points 0 and 1 are topologically indistringuishable in this topology. The topologies τ_1 and τ_2 are essentially the same, we've just relabelled 0 and 1, and indeed these topologies are homeomorphic on \mathbb{Z}_2 . The discrete topology is the only Hausdorff topology on \mathbb{Z}_2 .

For \mathbb{Z}_3 , we can use the fact that in a Hausdorff topological space singleton sets $\{x\}$ are closed. Since the finite union of closed sets is closed, the only Hausdorff topology on a finite set is the discrete topology. So, $\mathcal{P}(\mathbb{Z}_3)$ is a Hausdorff, and hence Kolmogorov, topology on \mathbb{Z}_3 . We can find another by modifying an idea from class. The topology generated on \mathbb{N} by all sets of the form \mathbb{Z}_n with $n \in \mathbb{N}$ can be modified to give a topology on \mathbb{Z}_3 . Declare $\tau = \{\mathbb{Z}_0, \mathbb{Z}_1, \mathbb{Z}_2, \mathbb{Z}_3\}$. This is a topology since the sets are all nested, so the intersection and union properties are satisfied, but also $\emptyset = \mathbb{Z}_0 \in \tau$ and $\mathbb{Z}_3 \in \tau$. It is Kolmogorov as well. Given $m, n \in \mathbb{Z}_3$ with $m < n, m \in \mathbb{Z}_n$ but $n \notin \mathbb{Z}_n$.

Figure 1: Topologies on \mathbb{Z}_2

Problem 4 (4 Points) Let (X, τ) be a sequential topological space and R an equivalence relation on X. Prove that the quotient space $(X/R, \tau_{X/R})$ is sequential as well.

Solution. Suppose not and let $\tilde{\mathcal{U}} \subseteq X/R$ be sequentially open but not open. Let $q: X \to X/R$ be the quotient map, q(x) = [x]. Then, by the definition of the quotient topology, $q^{-1}[\tilde{\mathcal{U}}]$ is not open since $\tilde{\mathcal{U}}$ is not open. Let $\mathcal{U} = q^{-1}[\tilde{\mathcal{U}}]$. But (X, τ) is sequential, so if \mathcal{U} is not open, then it is not sequentially open. But then there is a convergent sequence $a: \mathbb{N} \to X$ that converges to a point $x \in \mathcal{U}$ such that for all $N \in \mathbb{N}$ there is an $n \in \mathbb{N}$ with n > N such that $a_n \notin \mathcal{U}$. But the quotient map q is continuous, and continuous functions are sequentially continuous, so if $a_n \to x$, then $q(a_n) \to q(x)$. But then $q(a_n)$ is a convergent sequence in X/R that converges to a point $q(x) \in \tilde{\mathcal{U}}$. But $\tilde{\mathcal{U}}$ is sequentially open, so there is an $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with n > N it is true that $q(a_n) \in \tilde{\mathcal{U}}$. But then, by the definition of pre-image, we have $a_n \in \mathcal{U}$ for all n > N, a contradiction. Hence, $\tilde{\mathcal{U}}$ is open and $(X/R, \tau_{X/R})$ is sequential. **Problem 5** Kazimeirz Kuratowski gave an alternative, but equivalent, definition of topology. To him the notion of *closure* was sufficient to describe topological spaces. A Kuratowski closure operator on a set X is a function $\sigma: \mathcal{P}(X) \to \mathcal{P}(X)$ such that, for all $A, B \subseteq X$:

- 1. $\sigma(\emptyset) = \emptyset$
- 2. $A \subseteq \sigma(A)$
- 3. $\sigma(A) = \sigma(\sigma(A))$
- 4. $\sigma(A \cup B) = \sigma(A) \cup \sigma(B)$

A Kuratowski space is an ordered pair (X, σ) where X is a set and σ is a Kuratowski closure operator on X. We have seen in class that, if (X, τ) is a topological space, then Cl_{τ} is a Kuratowski closure operator. Now, let's go the other way.

• (2 Points) Show that, given (X, σ) , the set τ_{σ} defined by:

1

$$\tau_{\sigma} = \{ X \setminus \mathcal{C} \in \mathcal{P}(X) \mid \sigma(\mathcal{C}) = \mathcal{C} \}$$
(25)

is a topology on X. (We proved that, in topological spaces, $A \subseteq X$ being closed is equivalent to $\operatorname{Cl}_{\tau}(A) = A$. We are intuitively defining τ_{σ} as the set of all *complements of closed sets*).

• (6 Points) If (X, σ_X) and (Y, σ_Y) are Kuratowski spaces, $f: X \to Y$ is continuous if for all $A \subseteq X$ it is true that $f[\sigma_X(A)] \subseteq \sigma_Y(f[A])$. Show this is equivalent to continuity in topology. That is, if (X, τ_X) and (Y, τ_Y) are topological spaces, then $f: X \to Y$ is continuous if and only if for all $A \subseteq X$ it is true that $f[\operatorname{Cl}_{\tau_X}(A)] \subseteq \operatorname{Cl}_{\tau_Y}(f[A])$. [Hint: We proved $f: X \to Y$ is continuous if and only if for all closed $\mathcal{D} \subseteq Y$, the pre-image $f^{-1}[\mathcal{D}]$ is closed. Use this definition.]

Solution. As a consequence of $\sigma(A \cup B) = \sigma(A) \cup \sigma(B)$ we have that if $A \subseteq B$, then $\sigma(A) \subseteq \sigma(B)$. This is because, given $A \subseteq B$, we obtain:

$$\sigma(B) = \sigma(A \cup B) = \sigma(A) \cup \sigma(B) \tag{26}$$

so $\sigma(A) \subseteq \sigma(B)$. The set τ_{σ} is indeed a topology. Firstly, $\emptyset \in \tau_{\sigma}$. Since $X \subseteq \sigma(X)$, and since $\sigma(X) \subseteq X$, we have that $\sigma(X) = X$, so $\emptyset = X \setminus X$ is an element of τ_{σ} . Similarly, $X \in \tau_{\sigma}$ since $\sigma(\emptyset) = \emptyset$, and hence $X = X \setminus \emptyset$ is an element of τ_{σ} . Let $\mathcal{U}, \mathcal{V} \in \tau_{\sigma}$. Then $\mathcal{U} = X \setminus \mathcal{C}$ and $\mathcal{V} = X \setminus \mathcal{D}$ for sets \mathcal{C} and \mathcal{D} such that $\sigma(\mathcal{C}) = \mathcal{C}$ and $\sigma(\mathcal{D}) = \mathcal{D}$. But since σ is a Kuratowski closure operator:

$$\sigma(\mathcal{C} \cup \mathcal{D}) = \sigma(\mathcal{C}) \cup \sigma(\mathcal{D}) = \mathcal{C} \cup \mathcal{D}$$
⁽²⁷⁾

And hence $X \setminus (\mathcal{C} \cup \mathcal{D})$ is an element of τ_{σ} . But by the De Morgan law:

$$X \setminus (\mathcal{C} \cup \mathcal{D}) = (X \setminus \mathcal{C}) \cap (X \setminus \mathcal{D}) = \mathcal{U} \cap \mathcal{V}$$
⁽²⁸⁾

so τ_{σ} is closed under the intersection of two elements. Lastly, let $\mathcal{O} \subseteq \tau_{\sigma}$. If \mathcal{O} is empty, then $\bigcup \mathcal{O} = \emptyset$, and we've already shown that $\emptyset \in \tau_{\sigma}$. Suppose \mathcal{O} is non-empty. Then for all $\mathcal{U} \in \mathcal{O}$ there is a $\mathcal{C} \subseteq X$ such that $\mathcal{C} = \sigma(\mathcal{C})$ and $\mathcal{U} = X \setminus \mathcal{C}$. But then:

$$X \setminus \bigcup_{\mathcal{U} \in \mathcal{O}} \mathcal{U} = \bigcap_{\mathcal{U} \in \mathcal{O}} \left(X \setminus \mathcal{U} \right) = \bigcap_{\substack{\mathcal{C} = X \setminus \mathcal{U} \\ \mathcal{U} \in \mathcal{O}}} \mathcal{C}$$
(29)

To show that $\bigcup \mathcal{O} \in \tau_{\sigma}$ we must show that:

$$\sigma\Big(\bigcap_{\substack{\mathcal{C}=X\setminus\mathcal{U}\\\mathcal{U}\in\mathcal{O}}}\mathcal{C}\Big) = \bigcap_{\substack{\mathcal{C}=X\setminus\mathcal{U}\\\mathcal{U}\in\mathcal{O}}}\mathcal{C}$$
(30)

For simplicity, let Δ be the set of all $X \setminus \mathcal{U}, \mathcal{U} \in \mathcal{O}$. We have $\bigcap \Delta \subseteq \sigma(\bigcap \Delta)$ by the property of σ . We must show this reverses. Given any $\mathcal{C} \in \Delta$, by the definition of intersection, we have $\bigcap \Delta \subseteq \mathcal{C}$. But then $\sigma(\bigcap \Delta) \subseteq \sigma(\mathcal{C})$. But $\sigma(\mathcal{C}) = \mathcal{C}$ for all $\mathcal{C} \in \Delta$. Hence:

$$\sigma\Big(\bigcap\Delta\Big)\subseteq\bigcap_{\mathcal{C}\in\Delta}\mathcal{C}=\bigcap\Delta\tag{31}$$

so $\sigma(\bigcap \Delta) = \bigcap \Delta$. Hence $X \setminus \bigcap \Delta = \bigcup \mathcal{O}$ is an element of τ_{σ} . All four criterion are satisfied, so τ_{σ} is a topology.

Now to prove $f: X \to Y$ is continuous if and only if for all $A \subseteq X$ we have $f[\operatorname{Cl}_{\tau_X}(A)] \subseteq \operatorname{Cl}_{\tau_Y}(f[A])$. Suppose f is continuous. Since $\operatorname{Cl}_{\tau_Y}(f[A])$ is closed and f is continuous, $f^{-1}[\operatorname{Cl}_{\tau_Y}(f[A])]$ is closed. But $f[A] \subseteq \operatorname{Cl}_{\tau_Y}(f[A])$, so:

$$A \subseteq f^{-1}[f[A]] \subseteq f^{-1}[\operatorname{Cl}_{\tau_Y}(f[A])]$$
(32)

Therefore:

$$\operatorname{Cl}_{\tau_X}(A) \subseteq \operatorname{Cl}_{\tau_X}\left(f^{-1}\left[\operatorname{Cl}_{\tau_Y}\left(f[A]\right)\right]\right) = f^{-1}\left[\operatorname{Cl}_{\tau_Y}\left(f[A]\right)\right]$$
(33)

where this last equality comes from the fact that $f^{-1}\left[\operatorname{Cl}_{\tau_Y}(f[A])\right]$ is closed, since f is continuous, so it is own closure. From this, we conclude:

$$f\left[\operatorname{Cl}_{\tau_X}(A)\right] \subseteq \operatorname{Cl}_{\tau_Y}\left(f[A]\right) \tag{34}$$

Now, suppose for all $A \subseteq X$ we have that $f[\operatorname{Cl}_{\tau_X}(A)] \subseteq \operatorname{Cl}_{\tau_Y}(f[A])$. Let $\mathcal{D} \subseteq Y$ be closed. Let $\mathcal{C} = f^{-1}[\mathcal{D}]$. We must prove \mathcal{C} is closed. That is, we must prove $\operatorname{Cl}_{\tau_X}(\mathcal{C}) = \mathcal{C}$. It is automatic that $\mathcal{C} \subseteq \operatorname{Cl}_{\tau_X}(\mathcal{C})$, so we must prove $\operatorname{Cl}_{\tau_X}(\mathcal{C}) \subseteq \mathcal{C}$. But:

$$f\left[\operatorname{Cl}_{\tau_{X}}(\mathcal{C})\right] \subseteq \operatorname{Cl}_{\tau_{Y}}\left(f[\mathcal{C}]\right) = \operatorname{Cl}_{\tau_{Y}}\left(f\left[f^{-1}[\mathcal{D}]\right]\right) \subseteq \operatorname{Cl}_{\tau_{Y}}\left(\mathcal{D}\right) = \mathcal{D}$$
(35)

where we've used the fact that $\mathcal D$ is closed, and some of the basic laws of images and pre-images. But then:

$$\operatorname{Cl}_{\tau_X}(\mathcal{C}) \subseteq f^{-1}\Big[f\left[\operatorname{Cl}_{\tau_X}(\mathcal{C})\right]\Big] \subseteq f^{-1}[\mathcal{D}] = \mathcal{C}$$
 (36)

so $\operatorname{Cl}_{\tau_X}(\mathcal{C}) \subseteq \mathcal{C}$, and hence \mathcal{C} is closed. Thus, f is continuous.