Point-Set Topology: Lecture 2

Ryan Maguire

October 6, 2023

1 Cartesian Product and Power Sets

The axioms of set theory allow for two more constructions from sets. If A is a set, we can think of the set of all *subsets* of A.

Definition 1.1 (Power Set) The power set of a set A is the set $\mathcal{P}(A)$ defined by:

$$\mathcal{P}(A) = \{ B \mid B \subseteq A \} \tag{1}$$

That is, the set of all subsets of A.

Note that the set-builder notation has been abused here. I did not write the power set equation in the form $Y = \{x \in X \mid P(x)\}$ where X is a set that we know exists and P is some sentence on that set. Instead, I did the exact thing that can lead to Russel's paradox: I collected all things satisfying a sentence. Fear not, by the axioms of set theory this is one of the few allowable cases of this notation (In the previous notes we misused set-builder notation in the definition of unions. This is another allowed case).

Example 1.1 Let $A = \emptyset$. The power set of A is $\mathcal{P}(A) = \{\emptyset\}$. Do not confuse this set with the empty set. $\{\emptyset\}$ is the set that contains the empty set, and hence is not empty.

Example 1.2 Let $A = \{1, 2\}$. The power set $\mathcal{P}(A)$ is:

$$\mathcal{P}(A) = \left\{ \emptyset, \{1\}, \{2\}, \{1, 2\} \right\}$$
(2)

Note that for any set $A, \emptyset \subseteq A$ is true. So $\emptyset \in \mathcal{P}(A)$ is always true. Also, $A \subseteq A$ is true, so $A \in \mathcal{P}(A)$ is also true. We can visualize the power set of finite sets via *Hasse Diagrams* (Fig. 1).

The axioms of set theory also give us the *Cartesian product*. Kuratowski, one of the pioneers of point-set topology, tells us how we can define *ordered pairs*. Given a and b, we write:

$$(a,b) = \{\{a\}, \{a,b\}\}$$
(3)

Figure 1: Power Set of $\{1, 2, 3\}$

This definition allows us to define ordered pairs using sets. It has the property that (a, b) = (c, d) if and only if a = c and b = d. In particular, if a and b are distinct, then (a, b) and (b, a) are different objects. That is, ordered pairs have order.

Note that if A and B are sets, if $a \in A$, and if $b \in B$, then (a, b) is an element of $\mathcal{P}(\mathcal{P}(A \cup B))$. By collecting all elements of this set that are ordered pairs from A and B, we get the *Cartesian Product*.

Definition 1.2 (Cartesian Product) The Cartesian product of a set A with a set B is the set $A \times B$ defined by:

$$A \times B = \{ (a, b) \mid a \in A \text{ and } b \in B \}$$

$$\tag{4}$$

That is, the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$.

If we wanted to avoid abusing set-builder notation, we would write:

$$A \times B = \{ (a, b) \in \mathcal{P}(\mathcal{P}(A \cup B)) \mid a \in A \text{ and } b \in B \}$$
(5)

but this is a bit messy.

Example 1.3 If $A = \{1, 2\}$ and $B = \{a, b\}$, the Cartesian product $A \times B$ is the set:

$$A \times B = \{ (1, a), (1, b), (2, a), (2, b) \}$$
(6)

The Cartesian product $B \times A$ is slightly different:

$$B \times A = \{ (a, 1), (a, 2), (b, 1), (b, 2) \}$$
(7)

In general, if A and B are different sets, then $A \times B$ and $B \times A$ are not equal.

Example 1.4 The Euclidean plane \mathbb{R}^2 is the Cartesian product $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$.

If we have two subsets A and B of the real line \mathbb{R} , we can visualize $A \times B$ as a subset of \mathbb{R}^2 . This is done in Fig. 2. Points in A are shown in green, points in B in red, and the Cartesian product is in blue.

2 Functions

A function from a set A to a set B is a *rule* that assigns to each $a \in A$ a unique element $b \in B$. We could adopt the word function as a primitive, but it is possible to define functions precisely using our already developed vocabulary from set theory.

Definition 2.1 (Function) A function from a set A to a set B is a subset $f \subseteq A \times B$, denoted $f : A \to B$, such that for all $a \in A$ there is a unique $b \in B$ with $(a, b) \in f$. We write b = f(a).

Figure 2: Cartesian Product of Sets in $\mathbb R$

Figure 3: A Function $f : \mathbb{R} \to \mathbb{R}$

Figure 4: A Function from A to B

Fig. 3 shows this definition in action. The green denotes \mathbb{R}^2 and the blue curve that cuts through the plane is a subset $f \subseteq \mathbb{R} \times \mathbb{R}$. This is our usual notion of *function*, especially functions of a real variable.

Functions can be more abstract and do not need to be represented by curves in the plane. Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. The diagram in Fig. 4 depicts a valid function $f : A \to B$. To each element in A there is a unique element in B it is assigned to. Contrast this with Figs. 5, 6, and 7.

There are three special types of functions.

Definition 2.2 (Injective Function) An injective function from a set A to a set B is a function $f : A \to B$ such that for all $x, y \in A$, f(x) = f(y) if and only if x = y.

Example 2.1 The functions $f(x) = \sqrt{x}$ defined on $\mathbb{R}_{\geq 0}$, $\exp(x)$ defined on \mathbb{R} , and $\ln(x)$ defined on \mathbb{R}^+ are all injective.

Definition 2.3 (Surjective Function) A surjective function from a set A to a set B is a function $f : A \to B$ such that for all $b \in B$ there is an $a \in A$ with f(a) = b.

Example 2.2 The function $\tan : (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ is surjective. Every real number $r \in \mathbb{R}$ corresponds to the tangent of some angle θ between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$.

Figure 5: A Non-Function on $\mathbb R$

Figure 6: An Abstract Non-Function

Figure 7: Another Non-Function

Example 2.3 The function $f(x) = x^3 - x$ is surjective, but *not* injective. It is surjective because it is continuous and as x tends to positive infinity, f(x) tends to positive infinity as well. Similarly as x tends to negative infinity, so does f(x). By the intermediate value theorem, f hits every value in between, meaning f is surjective. It is not injective since f(0) = f(1) = 0.

Definition 2.4 (Bijective Function) A bijective function from a set A to a set B is a function $f: A \to B$ such that f is injective and surjective.

Example 2.4 The functions $\exp : \mathbb{R} \to \mathbb{R}^+$, $\ln : \mathbb{R}^+ \to \mathbb{R}$, and $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$ are all bijective.

We've defined functions in previous examples using formulas. For example, we could define $f : \mathbb{R} \to \mathbb{R}$ via $f(x) = x^2$. What is meant is the set $f \subseteq \mathbb{R} \times \mathbb{R}$ defined by:

$$f = \{ (x, x^2) \in \mathbb{R} \times \mathbb{R} \mid x \in \mathbb{R} \}$$
(8)

In practice we do not define functions by sets like this, but rather by formulas. You must be careful that your formula is *well-defined*.

Example 2.5 Let $f : \mathbb{Q} \to \mathbb{Z}$ be defined by:

$$f\left(\frac{p}{q}\right) = p \tag{9}$$

Is this really a function? Let's look at $\frac{1}{2}$. We have:

$$f\left(\frac{1}{2}\right) = 1\tag{10}$$

We also have:

$$f(\frac{1}{2}) = f(\frac{2}{4}) = 2 \tag{11}$$

so the formula f does not actually define a function, meaning our $f : \mathbb{Q} \to \mathbb{Z}$ notation is misleading. f fails to have the *uniqueness* property of functions. This is often called the *vertical line test* in calculus.

Definition 2.5 (Composition) The composition of functions $f : A \to B$ and $g : B \to C$ is the function $g \circ f : A \to C$ defined by:

$$(g \circ f)(a) = g(f(a)) \tag{12}$$

That is, apply f to a first, and then apply g to f(a).

Definition 2.6 (Inverse Function) An inverse of a function $f : A \to B$ is a function $g : B \to A$ such that $(g \circ f)(a) = a$ and $(f \circ g)(b) = b$ for all $a \in A$ and all $b \in B$.

Theorem 2.1. A function $f : A \to B$ is bijective if and only if it has an inverse function $g : B \to A$.

Proof. Suppose $f : A \to B$ is bijective. By definition, f is injective and surjective. That is, for each $b \in B$, there is an $a \in A$ such that f(a) = b (surjectivity), and this $a \in A$ is unique (injectivity). Define $g : B \to A$ by setting g(b) equal to the unique $a \in A$ with f(a) = b. By definition, g(f(a)) = a and f(g(b)) = b, so g is an inverse function of f. In the other direction, suppose $f : A \to B$ has an inverse function $g : B \to A$. Suppose $x, y \in A$ are such that f(x) = f(y). Then g(f(x)) = g(f(y)). But g(f(x)) = x and g(f(y)) = y since g is an inverse of f, meaning x = y and hence f is injective. If $b \in B$, let a = g(b). Then f(a) = f(g(b)) = b, and hence f is surjective. Therefore, f is bijective. \Box

Theorem 2.2. If $f : A \to B$ is a function, and if $g_0, g_1 : B \to A$ are inverses of f, then $g_0 = g_1$.

Proof. Let $b \in B$. Since f has an inverse, it is bijective, and hence there is an $a \in A$ with f(a) = b. But then:

$$g_0(b) = g_0(f(a)) \tag{13}$$

$$=a$$
 (14)

$$=g_1(f(a)) \tag{15}$$

$$=g_1(b) \tag{16}$$

and hence $g_0(b) = g_1(b)$, so g_0 and g_1 are the same function.

This tells us inverse functions are unique. We may then adopt the following notation.

Notation 2.1 If $f : A \to B$ is a function with an inverse $g : B \to A$ we denote this $g = f^{-1}$.

Definition 2.7 (**Image of a Set**) The image of a subset $\mathcal{U} \subseteq A$ of a function $f: A \to B$ is the set $f[\mathcal{U}] \subseteq B$ defined by:

$$f[\mathcal{U}] = \{ b \in B \mid \text{there exists } a \in \mathcal{U} \text{ such that } f(a) = b \}$$
(17)

That is, the set of all values f(a) for all $a \in \mathcal{U}$.

Example 2.6 Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. For every positive real number y there is a positive real number x such that $x^2 = y$, notably $x = \sqrt{y}$. Also, $0^2 = 0$. We also know that x^2 is always non-negative, so $x^2 < 0$ is never true for real numbers. We conclude that $f[\mathbb{R}] = \mathbb{R}_{>0}$.

Definition 2.8 (Pre-Image of a Set) The pre-image of a subset $\mathcal{V} \subseteq B$ of a function $f : A \to B$ is the set $f^{-1}[\mathcal{V}] \subseteq A$ defined by:

$$f^{-1}[\mathcal{V}] = \{ a \in A \mid f(a) \in \mathcal{V} \}$$

$$(18)$$

That is, the set of all $a \in A$ whose image lies in \mathcal{V} .

Example 2.7 Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sin(x)$. The pre-image of the set (0, 1) is the set of all real numbers x with $0 < \sin(x) < 1$. This is the set of real numbers of the form $r = x + 2\pi n$ with $0 < x < \pi$ and $n \in \mathbb{Z}$.

Bijections allow us to define the size of sets. Two sets are said to have the same size, or same *cardinality*, if there is a bijection between them.

Notation 2.2 We use the notation \mathbb{Z}_n to denote the set of integers 0, 1, ..., up to n-1, inclusive.

A finite set is a set that has a bijection with \mathbb{Z}_n for some natural number $n \in \mathbb{N}$. An infinite set is a set that is not finite. The *smallest* infinity in set theory is the size of the natural numbers.

Theorem 2.3. There is a bijection $f : \mathbb{N} \to \mathbb{Z}$.

Proof. Define f(n) by:

$$f(n) = \begin{cases} \frac{n}{2} & n \text{ even} \\ -\frac{n+1}{2} & n \text{ odd} \end{cases}$$
(19)

This is injective. If n and m are different numbers, and n is odd, and m is even, then m/2 and -(n + 1)/2 yield different values. If both m and n are even, then $\frac{m}{2} = \frac{n}{2}$ if and only if m = n. Lastly if m and n are both odd, then $-\frac{m+1}{2} = -\frac{n+1}{2}$ if and only if m = n. This is also surjective. Given $N \in \mathbb{Z}$, $N \ge 0$, choose n = 2N. Then f(n) = N. If N < 0, choose n = -1 - 2N. Then f(n) = N. If n < 0, choose n = -1 - 2N. Then f(n) = N. If superimentary meaning f(n) is well-defined. This shows f is surjective, and since it is also injective, f is bijective.

This means that \mathbb{Z} is *countably infinite*. A countable set is either finite, or can be put into bijection with \mathbb{N} . More surprisingly, the rational numbers are countable. It is hard to find an explicit bijection between \mathbb{N} and \mathbb{Q} . Instead, we invoke the *Cantor-Schröeder-Bernstein* theorems.

Theorem 2.4. If A and B are sets, and if there exist injective functions $f : A \to B$ and $g : B \to A$, then there is a bijective function $h : A \to B$.

Theorem 2.5. If A and B are sets, and if there exist surjective functions $f: A \to B$ and $g: B \to A$, then there is a bijective function $h: A \to B$.

We can describe a surjection $f : \mathbb{N} \to \mathbb{Q}^+$ via picture in Fig. 8. A surjection $f : \mathbb{N} \to \mathbb{Q}$ is given in Fig. 9.

Figure 8: A Surjection from $\mathbb N$ to $\mathbb Q^+$

Figure 9: A Surjection from $\mathbb N$ to $\mathbb Q$