Point-Set Topology: Lecture 2

Ryan Maguire

October 6, 2023

1 Cartesian Product and Power Sets

The axioms of set theory allow for two more constructions from sets. If A is a set, we can think of the set of all subsets of A.

Definition 1.1 (Power Set) The power set of a set A is the set $\mathcal{P}(A)$ defined by:

$$
\begin{equation*}
\mathcal{P}(A)=\{B \mid B \subseteq A\} \tag{1}
\end{equation*}
$$

That is, the set of all subsets of A.
Note that the set-builder notation has been abused here. I did not write the power set equation in the form $Y=\{x \in X \mid P(x)\}$ where X is a set that we know exists and P is some sentence on that set. Instead, I did the exact thing that can lead to Russel's paradox: I collected all things satisfying a sentence. Fear not, by the axioms of set theory this is one of the few allowable cases of this notation (In the previous notes we misused set-builder notation in the definition of unions. This is another allowed case).

Example 1.1 Let $A=\emptyset$. The power set of A is $\mathcal{P}(A)=\{\emptyset\}$. Do not confuse this set with the empty set. $\{\emptyset\}$ is the set that contains the empty set, and hence is not empty.

Example 1.2 Let $A=\{1,2\}$. The power set $\mathcal{P}(A)$ is:

$$
\begin{equation*}
\mathcal{P}(A)=\{\emptyset,\{1\},\{2\},\{1,2\}\} \tag{2}
\end{equation*}
$$

Note that for any set $A, \emptyset \subseteq A$ is true. So $\emptyset \in \mathcal{P}(A)$ is always true. Also, $A \subseteq A$ is true, so $A \in \mathcal{P}(A)$ is also true. We can visualize the power set of finite sets via Hasse Diagrams (Fig. 1).

The axioms of set theory also give us the Cartesian product. Kuratowski, one of the pioneers of point-set topology, tells us how we can define ordered pairs. Given a and b, we write:

$$
\begin{equation*}
(a, b)=\{\{a\},\{a, b\}\} \tag{3}
\end{equation*}
$$

Figure 1: Power Set of $\{1,2,3\}$

This definition allows us to define ordered pairs using sets. It has the property that $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$. In particular, if a and b are distinct, then (a, b) and (b, a) are different objects. That is, ordered pairs have order.

Note that if A and B are sets, if $a \in A$, and if $b \in B$, then (a, b) is an element of $\mathcal{P}(\mathcal{P}(A \cup B))$. By collecting all elements of this set that are ordered pairs from A and B, we get the Cartesian Product.

Definition 1.2 (Cartesian Product) The Cartesian product of a set A with a set B is the set $A \times B$ defined by:

$$
\begin{equation*}
A \times B=\{(a, b) \mid a \in A \text { and } b \in B\} \tag{4}
\end{equation*}
$$

That is, the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$.
If we wanted to avoid abusing set-builder notation, we would write:

$$
\begin{equation*}
A \times B=\{(a, b) \in \mathcal{P}(\mathcal{P}(A \cup B)) \mid a \in A \text { and } b \in B\} \tag{5}
\end{equation*}
$$

but this is a bit messy.
Example 1.3 If $A=\{1,2\}$ and $B=\{a, b\}$, the Cartesian product $A \times B$ is the set:

$$
\begin{equation*}
A \times B=\{(1, a),(1, b),(2, a),(2, b)\} \tag{6}
\end{equation*}
$$

The Cartesian product $B \times A$ is slightly different:

$$
\begin{equation*}
B \times A=\{(a, 1),(a, 2),(b, 1),(b, 2)\} \tag{7}
\end{equation*}
$$

In general, if A and B are different sets, then $A \times B$ and $B \times A$ are not equal.
Example 1.4 The Euclidean plane \mathbb{R}^{2} is the Cartesian product $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$.
If we have two subsets A and B of the real line \mathbb{R}, we can visualize $A \times B$ as a subset of \mathbb{R}^{2}. This is done in Fig. 2. Points in A are shown in green, points in B in red, and the Cartesian product is in blue.

2 Functions

A function from a set A to a set B is a rule that assigns to each $a \in A$ a unique element $b \in B$. We could adopt the word function as a primitive, but it is possible to define functions precisely using our already developed vocabulary from set theory.

Definition 2.1 (Function) A function from a set A to a set B is a subset $f \subseteq A \times B$, denoted $f: A \rightarrow B$, such that for all $a \in A$ there is a unique $b \in B$ with $(a, b) \in f$. We write $b=f(a)$.

Figure 2: Cartesian Product of Sets in \mathbb{R}

Figure 3: A Function $f: \mathbb{R} \rightarrow \mathbb{R}$

Figure 4: A Function from A to B

Fig. 3 shows this definition in action. The green denotes \mathbb{R}^{2} and the blue curve that cuts through the plane is a subset $f \subseteq \mathbb{R} \times \mathbb{R}$. This is our usual notion of function, especially functions of a real variable.

Functions can be more abstract and do not need to be represented by curves in the plane. Let $A=\{1,2,3,4\}$ and $B=\{a, b, c\}$. The diagram in Fig. 4 depicts a valid function $f: A \rightarrow B$. To each element in A there is a unique element in B it is assigned to. Contrast this with Figs. 5, 6, and 7.

There are three special types of functions.
Definition 2.2 (Injective Function) An injective function from a set A to a set B is a function $f: A \rightarrow B$ such that for all $x, y \in A, f(x)=f(y)$ if and only if $x=y$.

Example 2.1 The functions $f(x)=\sqrt{x}$ defined on $\mathbb{R}_{\geq 0}, \exp (x)$ defined on \mathbb{R}, and $\ln (x)$ defined on \mathbb{R}^{+}are all injective.

Definition 2.3 (Surjective Function) A surjective function from a set A to a set B is a function $f: A \rightarrow B$ such that for all $b \in B$ there is an $a \in A$ with $f(a)=b$.

Example 2.2 The function $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ is surjective. Every real number $r \in \mathbb{R}$ corresponds to the tangent of some angle θ between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$.

Figure 5: A Non-Function on \mathbb{R}

Figure 6: An Abstract Non-Function
$A \quad B$

Figure 7: Another Non-Function

Example 2.3 The function $f(x)=x^{3}-x$ is surjective, but not injective. It is surjective because it is continuous and as x tends to positive infinity, $f(x)$ tends to positive infinity as well. Similarly as x tends to negative infinity, so does $f(x)$. By the intermediate value theorem, f hits every value in between, meaning f is surjective. It is not injective since $f(0)=f(1)=0$.

Definition 2.4 (Bijective Function) A bijective function from a set A to a set B is a function $f: A \rightarrow B$ such that f is injective and surjective.

Example 2.4 The functions $\exp : \mathbb{R} \rightarrow \mathbb{R}^{+}$, $\ln : \mathbb{R}^{+} \rightarrow \mathbb{R}$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}$ are all bijective.

We've defined functions in previous examples using formulas. For example, we could define $f: \mathbb{R} \rightarrow \mathbb{R}$ via $f(x)=x^{2}$. What is meant is the set $f \subseteq \mathbb{R} \times \mathbb{R}$ defined by:

$$
\begin{equation*}
f=\left\{\left(x, x^{2}\right) \in \mathbb{R} \times \mathbb{R} \mid x \in \mathbb{R}\right\} \tag{8}
\end{equation*}
$$

In practice we do not define functions by sets like this, but rather by formulas. You must be careful that your formula is well-defined.

Example 2.5 Let $f: \mathbb{Q} \rightarrow \mathbb{Z}$ be defined by:

$$
\begin{equation*}
f\left(\frac{p}{q}\right)=p \tag{9}
\end{equation*}
$$

Is this really a function? Let's look at $\frac{1}{2}$. We have:

$$
\begin{equation*}
f\left(\frac{1}{2}\right)=1 \tag{10}
\end{equation*}
$$

We also have:

$$
\begin{equation*}
f\left(\frac{1}{2}\right)=f\left(\frac{2}{4}\right)=2 \tag{11}
\end{equation*}
$$

so the formula f does not actually define a function, meaning our $f: \mathbb{Q} \rightarrow \mathbb{Z}$ notation is misleading. f fails to have the uniqueness property of functions. This is often called the vertical line test in calculus.

Definition 2.5 (Composition) The composition of functions $f: A \rightarrow B$ and $g: B \rightarrow C$ is the function $g \circ f: A \rightarrow C$ defined by:

$$
\begin{equation*}
(g \circ f)(a)=g(f(a)) \tag{12}
\end{equation*}
$$

That is, apply f to a first, and then apply g to $f(a)$.
Definition 2.6 (Inverse Function) An inverse of a function $f: A \rightarrow B$ is a function $g: B \rightarrow A$ such that $(g \circ f)(a)=a$ and $(f \circ g)(b)=b$ for all $a \in A$ and all $b \in B$.

Theorem 2.1. A function $f: A \rightarrow B$ is bijective if and only if it has an inverse function $g: B \rightarrow A$.

Proof. Suppose $f: A \rightarrow B$ is bijective. By definition, f is injective and surjective. That is, for each $b \in B$, there is an $a \in A$ such that $f(a)=b$ (surjectivity), and this $a \in A$ is unique (injectivity). Define $g: B \rightarrow A$ by setting $g(b)$ equal to the unique $a \in A$ with $f(a)=b$. By definition, $g(f(a))=a$ and $f(g(b))=b$, so g is an inverse function of f. In the other direction, suppose $f: A \rightarrow B$ has an inverse function $g: B \rightarrow A$. Suppose $x, y \in A$ are such that $f(x)=f(y)$. Then $g(f(x))=g(f(y))$. But $g(f(x))=x$ and $g(f(y))=y$ since g is an inverse of f, meaning $x=y$ and hence f is injective. If $b \in B$, let $a=g(b)$. Then $f(a)=f(g(b))=b$, and hence f is surjective. Therefore, f is bijective.

Theorem 2.2. If $f: A \rightarrow B$ is a function, and if $g_{0}, g_{1}: B \rightarrow A$ are inverses of f, then $g_{0}=g_{1}$.
Proof. Let $b \in B$. Since f has an inverse, it is bijective, and hence there is an $a \in A$ with $f(a)=b$. But then:

$$
\begin{align*}
g_{0}(b) & =g_{0}(f(a)) \tag{13}\\
& =a \tag{14}\\
& =g_{1}(f(a)) \tag{15}\\
& =g_{1}(b) \tag{16}
\end{align*}
$$

and hence $g_{0}(b)=g_{1}(b)$, so g_{0} and g_{1} are the same function.
This tells us inverse functions are unique. We may then adopt the following notation.

Notation 2.1 If $f: A \rightarrow B$ is a function with an inverse $g: B \rightarrow A$ we denote this $g=f^{-1}$.

Definition 2.7 (Image of a Set) The image of a subset $\mathcal{U} \subseteq A$ of a function $f: A \rightarrow B$ is the set $f[\mathcal{U}] \subseteq B$ defined by:

$$
\begin{equation*}
f[\mathcal{U}]=\{b \in B \mid \text { there exists } a \in \mathcal{U} \text { such that } f(a)=b\} \tag{17}
\end{equation*}
$$

That is, the set of all values $f(a)$ for all $a \in \mathcal{U}$.
Example 2.6 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$. For every positive real number y there is a positive real number x such that $x^{2}=y$, notably $x=\sqrt{y}$. Also, $0^{2}=0$. We also know that x^{2} is always non-negative, so $x^{2}<0$ is never true for real numbers. We conclude that $f[\mathbb{R}]=\mathbb{R}_{\geq 0}$.
Definition 2.8 (Pre-Image of a Set) The pre-image of a subset $\mathcal{V} \subseteq B$ of a function $f: A \rightarrow B$ is the set $f^{-1}[\mathcal{V}] \subseteq A$ defined by:

$$
\begin{equation*}
f^{-1}[\mathcal{V}]=\{a \in A \mid f(a) \in \mathcal{V}\} \tag{18}
\end{equation*}
$$

That is, the set of all $a \in A$ whose image lies in \mathcal{V}.
Example 2.7 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\sin (x)$. The pre-image of the set $(0,1)$ is the set of all real numbers x with $0<\sin (x)<1$. This is the set of real numbers of the form $r=x+2 \pi n$ with $0<x<\pi$ and $n \in \mathbb{Z}$.

Bijections allow us to define the size of sets. Two sets are said to have the same size, or same cardinality, if there is a bijection between them.

Notation 2.2 We use the notation \mathbb{Z}_{n} to denote the set of integers $0,1, \ldots$, up to $n-1$, inclusive.

A finite set is a set that has a bijection with \mathbb{Z}_{n} for some natural number $n \in \mathbb{N}$. An infinite set is a set that is not finite. The smallest infinity in set theory is the size of the natural numbers.

Theorem 2.3. There is a bijection $f: \mathbb{N} \rightarrow \mathbb{Z}$.
Proof. Define $f(n)$ by:

$$
f(n)= \begin{cases}\frac{n}{2} & n \text { even } \tag{19}\\ -\frac{n+1}{2} & n \text { odd }\end{cases}
$$

This is injective. If n and m are different numbers, and n is odd, and m is even, then $m / 2$ and $-(n+1) / 2$ yield different values. If both m and n are even, then $\frac{m}{2}=\frac{n}{2}$ if and only if $m=n$. Lastly if m and n are both odd, then $-\frac{m+1}{2}=-\frac{n+1}{2}$ if and only if $m=n$. This is also surjective. Given $N \in \mathbb{Z}$, $N \geq 0$, choose $n=2 N$. Then $f(n)=N$. If $N<0$, choose $n=-1-2 N$. Then $f(n)=N$. Note $-1-2 N$ is positive since N is negative, meaning $f(n)$ is well-defined. This shows f is surjective, and since it is also injective, f is bijective.

This means that \mathbb{Z} is countably infinite. A countable set is either finite, or can be put into bijection with \mathbb{N}. More surprisingly, the rational numbers are countable. It is hard to find an explicit bijection between \mathbb{N} and \mathbb{Q}. Instead, we invoke the Cantor-Schröeder-Bernstein theorems.

Theorem 2.4. If A and B are sets, and if there exist injective functions f : $A \rightarrow B$ and $g: B \rightarrow A$, then there is a bijective function $h: A \rightarrow B$.

Theorem 2.5. If A and B are sets, and if there exist surjective functions $f: A \rightarrow B$ and $g: B \rightarrow A$, then there is a bijective function $h: A \rightarrow B$.

We can describe a surjection $f: \mathbb{N} \rightarrow \mathbb{Q}^{+}$via picture in Fig. 8. A surjection $f: \mathbb{N} \rightarrow \mathbb{Q}$ is given in Fig. 9.

Figure 8: A Surjection from \mathbb{N} to \mathbb{Q}^{+}

Figure 9: A Surjection from \mathbb{N} to \mathbb{Q}

