Point-Set Topology: Lecture 3

Ryan Maguire

October 6, 2023

1 More Cardinality

In the last lecture we showed $\operatorname{Card}(\mathbb{N})=\operatorname{Card}(\mathbb{Z})=\operatorname{Card}(\mathbb{Q})$. A countably infinite set is a set that can be put into a bijection with \mathbb{N}. A countable set is a set that is either countably infinite or finite. An uncountable set is a set that is infinite but not countable. We now arrive at our first uncountable set, the real numbers \mathbb{R}. Suppose they are countable. Then there is a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$. For simplicity, let us assume there is a bijection $f: \mathbb{N} \rightarrow(0,1)$. Then we can write out this bijection with a list.

$$
\begin{align*}
& f(0)=0 . d_{0,0} d_{0,1} d_{0,2} d_{0,3} d_{0,4} d_{0,5} \cdots \tag{1}\\
& f(1)=0 . d_{1,0} d_{1,1} d_{1,2} d_{1,3} d_{1,4} d_{1,5} \cdots \tag{2}\\
& f(2)=0 . d_{2,0} d_{2,1} d_{2,2} d_{2,3} d_{2,4} d_{2,5} \cdots \tag{3}\\
& f(3)=0 . d_{3,0} d_{3,1} d_{3,2} d_{3,3} d_{3,4} d_{3,5} \cdots \tag{4}\\
& f(4)=0 . d_{4,0} d_{4,1} d_{4,2} d_{4,3} d_{4,4} d_{4,5} \cdots \tag{5}\\
& f(5)=0 . d_{5,0} d_{5,1} d_{5,2} d_{5,3} d_{5,4} d_{5,5} \cdots \tag{6}
\end{align*}
$$

where $d_{m, n}$ is the decimal of the $m^{\text {th }}$ number in the $n^{\text {th }}$ decimal place. Since the bijection is between \mathbb{N} and $(0,1)$, the interger part of each $f(n)$ is zero. We now show that f is not a bijection by giving a new number that is not on the list. Define $r \in(0,1)$ as follows:

$$
\begin{equation*}
r=0 . r_{0} r_{1} r_{2} r_{3} r_{4} r_{5} \ldots \tag{7}
\end{equation*}
$$

where

$$
r_{n}= \begin{cases}d_{n, n}+1 & d_{n, n} \neq 9 \tag{8}\\ 0 & d_{n, n}=9\end{cases}
$$

This number is not equal to $f(n)$ for any n. It is not $f(0)$ since r_{0} and $d_{0,0}$ are different. It is not $f(1)$ since r_{1} and $d_{1,1}$ differ. Similarly, it is not $f(n)$ since r_{n} and $d_{n, n}$ are not the same decimal. So r is not on our list, meaning $f(n) \neq r$ for any $n \in \mathbb{N}$, contradicting the fact that f is a bijection.

There are small gaps here, meaning this is a sketch of proof and not a full proof. The argument does not take into account the fact that $0.1=0.0 \overline{9}$, for example, but this can be corrected.

Theorem 1.1 (Cantor's Theorem). If A is a set, then there is an injective function $f: A \rightarrow \mathcal{P}(A)$, where $\mathcal{P}(A)$ is the power set of A, but there exists no surjection, and hence no bijection.

Proof. Suppose there is a surjection $f: A \rightarrow \mathcal{P}(A)$. Define $B \subseteq A$ by:

$$
\begin{equation*}
B=\{x \in A \mid x \notin f(x)\} \tag{9}
\end{equation*}
$$

Since $f(x) \in \mathcal{P}(A)$ for all $x \in A$, it is valid to ask if $x \in f(x)$. Since $B \subseteq A$ we have $B \in \mathcal{P}(A)$ by the definition of power set. But since $f: A \rightarrow \mathcal{P}(A)$ is a surjection there must be some $y \in A$ such that $f(y)=B$. But then either $y \in B$ or $y \notin B$. Suppose $y \in B$. If $y \in B$, then $y \in f(y)$ since $f(y)=B$. But if $y \in B$, then by the definition of B that means $y \notin f(y)$, a contradiction. So $y \notin B$. But if $y \notin B$, then $y \notin f(y)$ since $f(y)=B$. But by the definition of B, if $y \notin f(y)$, then $y \in B$, a contradiction. So $f(y) \neq B$, and hence f is not a surjection.

There is an injective function $f: A \rightarrow \mathcal{P}(A)$. Define:

$$
\begin{equation*}
f(x)=\{x\} \tag{10}
\end{equation*}
$$

Then $f(x)=f(y)$ if and only if $\{x\}=\{y\}$, which is true if and only if $x=y$, hence f is injective.

There is a bijection from $\mathcal{P}(\mathbb{N})$ to \mathbb{R}. Again, a sketch of proof is given. We'll construct a surjection $f: \mathcal{P}(\mathbb{N}) \rightarrow[0,1]$, the closed unit interval. Given a set $A \subseteq \mathbb{N}$, construct the number $r \in[0,1]$ using binary as follows:

$$
\begin{equation*}
f(A)=r=0 . r_{0} r_{1} r_{2} \ldots \tag{11}
\end{equation*}
$$

where $r_{n}=1$ if $n \in A$ and $r_{n}=0$ if $n \notin A$. For example, if $A=\emptyset$, then $f(\emptyset)=0.000 \cdots=0$. If $A=\mathbb{N}$, then $f(\mathbb{N})=0.111 \cdots=1$. If $A=\{0,2,4, \ldots\}$, then $f(A)=0.101010 \ldots$ If $A=\{1,2,3\}$, then $f(A)=0.01110000 \ldots$. Since every number $r \in[0,1]$ can be written in binary form in such a way, f is a surjection. We can reverse this process as well, but again the issue of 1 vs. $0 . \overline{9}$ arises and needs correcting. It is possible to do this, but not currently worth our time investigating.

You may now ask this is a bijection from the natural numbers to the closed unit interval. What about \mathbb{R} ? We can construct a bijection $g:[0,1] \rightarrow(0,1)$, the closed unit interval to the open unit interval, via:

$$
g(x)= \begin{cases}\frac{1}{2} & x=0 \tag{12}\\ \frac{x}{4} & x=\frac{1}{2^{n}} \text { for some } n \in \mathbb{N} \\ x & \text { otherwise }\end{cases}
$$

The graph is shown in Fig. 1. We will eventually prove that there is no continuous bijection $f:[0,1] \rightarrow(0,1)$. For those interested, try to find a bijection $f:[0,1] \rightarrow(0,1)$ that has only finitely many discontinuities.

Figure 1: Bijection from $[0,1]$ to $(0,1)$

Using this bijection g, we need a bijection from $(0,1)$ to \mathbb{R}. This is given by:

$$
\begin{equation*}
h(x)=\frac{2 x-1}{x(1-x)} \tag{13}
\end{equation*}
$$

By composing $h \circ g \circ f$ we get a bijection from $\mathcal{P}(\mathbb{N})$ to \mathbb{R}. This means that cardinality is transitive.

Theorem 1.2. If $\operatorname{Card}(A)=\operatorname{Card}(B)$ and $\operatorname{Card}(B)=\operatorname{Card}(C)$, then $\operatorname{Card}(A)=$ $\operatorname{Card}(C)$.

Proof. Since A and B are of the same cardinality, there is a bijection $f: A \rightarrow B$. Similarly, there is a bijection $g: B \rightarrow C$. By composing we get a bijection $g \circ f: A \rightarrow C$, meaning $\operatorname{Card}(A)=\operatorname{Card}(C)$.

2 Relations

Relations are ways of saying certain elements of a set are related to each other. There are many relations you use daily in mathematics. Equality ($=$), less than $(<)$, greater than $(>)$, less than or equal (\leq), and greater than or equal (\geq).

Figure 2: Bijection from $(0,1)$ to \mathbb{R}

We've also seen relations on sets such as inclusion (\subseteq) and proper inclusion (\subsetneq). Cardinality can also be thought of as a type of relation on sets. The most general definition of a relation is as follows.

Definition 2.1 (Relation) A relation on a set A is a subset $R \subseteq A \times A$.
If $(a, b) \in R$ we write this as $a R b$.
Example 2.1 Suppose we know what less than means for real numbers. We can define $<$ to be the set:

$$
\begin{equation*}
<=\{(a, b) \in \mathbb{R} \times \mathbb{R} \mid a \text { is less than } b\} \tag{14}
\end{equation*}
$$

Rather than writing $(a, b) \in<$, we write $a<b$. It's weird to think of the symbol $<$ as a set, and in practice we don't. We think of it as a way of relating elements in \mathbb{R}. Similarly, for a set A and a relation R, you should think of R as a way of relating elements.

Example 2.2 The natural numbers can be given a precise construction. We write $0=\emptyset, 1=\{0\}, 2=\{0,1\}, 3=\{0,1,2\}$, and so on. We can now define $<$ on \mathbb{N} as follows:

$$
\begin{equation*}
<=\{(m, n) \in \mathbb{N} \times \mathbb{N} \mid m \in n\} \tag{15}
\end{equation*}
$$

This is bizarre, but makes precise what inequality means. Since $3=\{0,1,2\}$, we see that $1 \in 3$, meaning we can write $1<3$. This is in agreement with the way we intuitively think of the less than relation.

Example 2.3 If X is a set, and $R \subseteq \mathcal{P}(X) \times \mathcal{P}(X)$ is defined by:

$$
\begin{equation*}
R=\{(A, B) \in \mathcal{P}(X) \times \mathcal{P}(X) \mid A \subseteq B\} \tag{16}
\end{equation*}
$$

then R is the inclusion relation on the set of all subsets of X.
Since the definition of relation is so general (any subset of $A \times A$), it is often the case the we restrict our attention to special types of relations.

Definition 2.2 (Reflexive Relation) A reflexive relation on a set A is a relation R such that for all $a \in A, a R a$. That is, for all $a \in A, a$ is related to itself by R.

Example 2.4 Equality ($=$) is reflexive, as is inclusion (\subseteq).
Example 2.5 Proper inclusion (\subsetneq) is not reflexive, neither is less than $(<)$ nor greater than ($>$).

Given a set A, the diagonal of $A \times A$ is the set of all ordered pairs (a, a) for all $a \in A$. If we look at $\mathbb{R} \times \mathbb{R}$, the diagonal is the line $y=x$ in the plane, hence the name. A reflexive relation is a relation R that contains the diagonal.

Definition 2.3 (Symmetric Relation) A symmetric relation on a set A is a relation R such that for all $a, b \in A, a R b$ if and only if $b R a$.

Example 2.6 Equality is symmetric. $a=b$ implies $b=a$.
Example 2.7 Containment (\in) is not symmetric. It is a theorem of set theory that $x \in y$ implies $y \notin x$. The importance of this claim is that it helps us avoid Russell's paradox, one of the reasons for developing set theory in the first place.

Example 2.8 Inclusion is a relation that is reflexive but not symmetric. It is possible for $A \subseteq B$ but $B \nsubseteq A$. For example, $A=\mathbb{Q}$ and $B=\mathbb{R}$.

Definition 2.4 (Transitive Relation) A transitive relation on a set A is a relation R such that for all $a, b, c \in A, a R b$ and $b R c$ implies $a R c$.

Example 2.9 Equality is transitive. This is one of the assumptions dating back to Euclid. If $a=b$ and $b=c$, then $a=c$.

Example 2.10 Inequality is also transitive. If $a<b$ and $b<c$, then $a<c$.
Example 2.11 Inclusion is transitive. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
Example 2.12 Containment does not need to be transitive. Let $a=\emptyset, b=$ $\{\emptyset\}$, and $c=\{\{\emptyset\}\}$. Then $a \in b, b \in c$, but $a \notin c$.

Definition 2.5 (Equivalence Relation) An equivalence relation on a set A is a relation R that is reflexive, symmetric, and transitive.

Equivalence relations allow us to define equivalence classes.
Definition 2.6 (Equivalence Class) The equivalence class of an element $a \in$ A with respect to an equivalence relation R is the set $[a]$ defined by:

$$
\begin{equation*}
[a]=\{b \in A \mid a R b\} \tag{17}
\end{equation*}
$$

That is, the set of all elements in A related to a by R.
Theorem 2.1. If A is a set, if R is an equivalence relation, and if $a, b \in A$, then $[a]=[b]$ if and only if $a R b$ and $b R a$.

Proof. Since R is reflexive, $a \in[a]$ and $b \in[b]$. If $a R b$, then $b \in[a]$, by definition. But R is symmetric, so $b R a$ and hence $a \in[b]$. That is, the sets [a] and [b] both contain a and b. If $c \in[a]$ then $a R c$. But $b R a$, and since R is transitive, $b R c$. Therefore $c \in[b]$. Similarly, $c \in[b]$ implies $c \in[a]$. We have shown that $[a]$ and $[b]$ consist of precisely the same elements, so $[a]=[b]$. In the other direction, if $[a]=[b]$, then by definition $a \in[b]$ and $b \in[a]$, and hence $a R b$ and $b R a$.

Definition 2.7 (Quotient Set) The quotient set of a set A with respect to an equivalence relation R is the set A / R defined by:

$$
\begin{equation*}
A / R=\{B \in \mathcal{P}(A) \mid B=[a] \text { for some } a \in A\} \tag{18}
\end{equation*}
$$

That is, A / R is the set of all equivalence classes of A with respect to R.

The notation A / R is just notation. We are not dividing sets. Intuitively, we are forming a new set by taking all of the elements $b \in A$ such that $b \in[a]$ and gluing them to a, creating a single element. This will be very important in topology when we talk about quotient spaces.

Example 2.13 We can think of a fraction $\frac{a}{b}$ as an ordered pair $(a, b) \in \mathbb{Z} \times(\mathbb{Z} \backslash$ $\{0\}$). We do not want $\frac{1}{2}$ and $\frac{2}{4}$ to be different elements, so we need to glue some elements of this product together. That is, $\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$ is a set of points in the plane \mathbb{R}^{2} and the points $(1,2)$ and $(2,4)$ are different. We ask how can we say $\frac{a}{b}=\frac{c}{d}$ using only integers? We are trying to define what a rational number is, so it would be circular to use the notation $\frac{a}{b}$ in our argument. We obtain the answer via cross-multiplying. We know that $\frac{a}{b}=\frac{c}{d}$ is true (essentially by definition) when $a d=b c$. This allows us to define an equivalence relation on $\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$. Let $A=\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$ and define

$$
\begin{equation*}
R=\{((a, b),(c, d)) \in A \times A \mid a d=b c\} \tag{19}
\end{equation*}
$$

The quotient set A / R is the set of rational numbers. The equivalence classes $[(1,2)]$ and $[(2,4)]$ are the same since $1 \cdot 4=2 \cdot 2$. That is, we have glued together $(1,2)$ and $(2,4)$ to form a single object, the fraction $\frac{1}{2}$. We write $[(a, b)]=\frac{a}{b}$ for convenience.

