Point-Set Topology: Lecture 3

Ryan Maguire

October 6, 2023

1 More Cardinality

In the last lecture we showed $\operatorname{Card}(\mathbb{N}) = \operatorname{Card}(\mathbb{Z}) = \operatorname{Card}(\mathbb{Q})$. A countably infinite set is a set that can be put into a bijection with N. A countable set is a set that is either countably infinite or finite. An uncountable set is a set that is infinite but not countable. We now arrive at our first uncountable set, the real numbers \mathbb{R} . Suppose they are countable. Then there is a bijection $f : \mathbb{N} \to \mathbb{R}$. For simplicity, let us assume there is a bijection $f : \mathbb{N} \to (0, 1)$. Then we can write out this bijection with a list.

$$f(0) = 0.d_{0,0}d_{0,1}d_{0,2}d_{0,3}d_{0,4}d_{0,5}\dots$$
(1)

$$f(1) = 0.d_{1,0}d_{1,1}d_{1,2}d_{1,3}d_{1,4}d_{1,5}\dots$$
(2)

$$f(2) = 0.d_{2,0}d_{2,1}d_{2,2}d_{2,3}d_{2,4}d_{2,5}\dots$$
(3)

$$f(3) = 0.d_{3,0}d_{3,1}d_{3,2}d_{3,3}d_{3,4}d_{3,5}\dots$$
(4)

$$f(4) = 0.d_{4,0}d_{4,1}d_{4,2}d_{4,3}d_{4,4}d_{4,5}\dots$$
(5)

$$f(5) = 0.d_{5,0}d_{5,1}d_{5,2}d_{5,3}d_{5,4}d_{5,5}\dots$$
(6)

where $d_{m,n}$ is the decimal of the m^{th} number in the n^{th} decimal place. Since the bijection is between \mathbb{N} and (0, 1), the interger part of each f(n) is zero. We now show that f is not a bijection by giving a new number that is not on the list. Define $r \in (0, 1)$ as follows:

$$r = 0.r_0 r_1 r_2 r_3 r_4 r_5 \dots (7)$$

where

$$r_n = \begin{cases} d_{n,n} + 1 & d_{n,n} \neq 9\\ 0 & d_{n,n} = 9 \end{cases}$$
(8)

This number is not equal to f(n) for any n. It is not f(0) since r_0 and $d_{0,0}$ are different. It is not f(1) since r_1 and $d_{1,1}$ differ. Similarly, it is not f(n) since r_n and $d_{n,n}$ are not the same decimal. So r is not on our list, meaning $f(n) \neq r$ for any $n \in \mathbb{N}$, contradicting the fact that f is a bijection.

There are small gaps here, meaning this is a *sketch of proof* and not a full proof. The argument does not take into account the fact that $0.1 = 0.0\overline{9}$, for example, but this can be corrected.

Theorem 1.1 (Cantor's Theorem). If A is a set, then there is an injective function $f : A \to \mathcal{P}(A)$, where $\mathcal{P}(A)$ is the power set of A, but there exists no surjection, and hence no bijection.

Proof. Suppose there is a surjection $f: A \to \mathcal{P}(A)$. Define $B \subseteq A$ by:

$$B = \{ x \in A \mid x \notin f(x) \}$$

$$(9)$$

Since $f(x) \in \mathcal{P}(A)$ for all $x \in A$, it is valid to ask if $x \in f(x)$. Since $B \subseteq A$ we have $B \in \mathcal{P}(A)$ by the definition of power set. But since $f : A \to \mathcal{P}(A)$ is a surjection there must be some $y \in A$ such that f(y) = B. But then either $y \in B$ or $y \notin B$. Suppose $y \in B$. If $y \in B$, then $y \in f(y)$ since f(y) = B. But if $y \in B$, then by the definition of B that means $y \notin f(y)$, a contradiction. So $y \notin B$. But if $y \notin B$, then $y \notin f(y)$ since f(y) = B. But by the definition of B, if $y \notin f(y)$, then $y \in B$, a contradiction. So $f(y) \neq B$, and hence f is not a surjection.

There is an injective function $f: A \to \mathcal{P}(A)$. Define:

$$f(x) = \{x\} \tag{10}$$

Then f(x) = f(y) if and only if $\{x\} = \{y\}$, which is true if and only if x = y, hence f is injective.

There is a bijection from $\mathcal{P}(\mathbb{N})$ to \mathbb{R} . Again, a sketch of proof is given. We'll construct a surjection $f : \mathcal{P}(\mathbb{N}) \to [0, 1]$, the closed unit interval. Given a set $A \subseteq \mathbb{N}$, construct the number $r \in [0, 1]$ using binary as follows:

$$f(A) = r = 0.r_0 r_1 r_2 \dots$$
(11)

where $r_n = 1$ if $n \in A$ and $r_n = 0$ if $n \notin A$. For example, if $A = \emptyset$, then $f(\emptyset) = 0.000 \cdots = 0$. If $A = \mathbb{N}$, then $f(\mathbb{N}) = 0.111 \cdots = 1$. If $A = \{0, 2, 4, \ldots\}$, then $f(A) = 0.101010 \ldots$. If $A = \{1, 2, 3\}$, then $f(A) = 0.01110000 \ldots$. Since every number $r \in [0, 1]$ can be written in binary form in such a way, f is a surjection. We can reverse this process as well, but again the issue of 1 vs. $0.\overline{9}$ arises and needs correcting. It is possible to do this, but not currently worth our time investigating.

You may now ask this is a bijection from the natural numbers to the closed unit interval. What about \mathbb{R} ? We can construct a bijection $g : [0,1] \to (0,1)$, the closed unit interval to the open unit interval, via:

$$g(x) = \begin{cases} \frac{1}{2} & x = 0\\ \frac{x}{4} & x = \frac{1}{2^n} \text{ for some } n \in \mathbb{N}\\ x & \text{otherwise} \end{cases}$$
(12)

The graph is shown in Fig. 1. We will eventually prove that there is no *continuous* bijection $f : [0,1] \to (0,1)$. For those interested, try to find a bijection $f : [0,1] \to (0,1)$ that has only *finitely many* discontinuities.

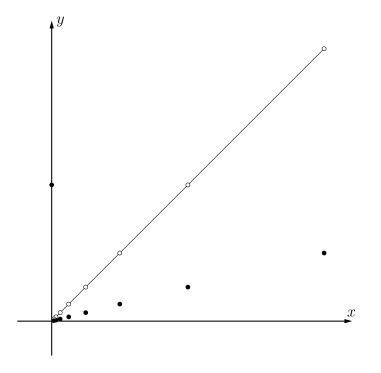


Figure 1: Bijection from [0, 1] to (0, 1)

Using this bijection g, we need a bijection from (0,1) to \mathbb{R} . This is given by:

$$h(x) = \frac{2x - 1}{x(1 - x)} \tag{13}$$

By composing $h \circ g \circ f$ we get a bijection from $\mathcal{P}(\mathbb{N})$ to \mathbb{R} . This means that cardinality is *transitive*.

Theorem 1.2. If Card(A) = Card(B) and Card(B) = Card(C), then Card(A) = Card(C).

Proof. Since A and B are of the same cardinality, there is a bijection $f : A \to B$. Similarly, there is a bijection $g : B \to C$. By composing we get a bijection $g \circ f : A \to C$, meaning Card(A) = Card(C).

2 Relations

Relations are ways of saying certain elements of a set are related to each other. There are many relations you use daily in mathematics. Equality (=), less than (<), greater than (>), less than or equal (\leq) , and greater than or equal (\geq) .

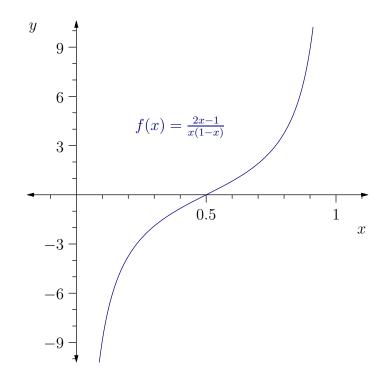


Figure 2: Bijection from (0,1) to \mathbb{R}

We've also seen relations on sets such as *inclusion* (\subseteq) and *proper inclusion* (\subsetneq) . Cardinality can also be thought of as a type of relation on sets. The most general definition of a relation is as follows.

Definition 2.1 (Relation) A relation on a set A is a subset $R \subseteq A \times A$.

If $(a, b) \in R$ we write this as aRb.

Example 2.1 Suppose we know what *less than* means for real numbers. We can define < to be the set:

$$< = \{ (a, b) \in \mathbb{R} \times \mathbb{R} \mid a \text{ is less than } b \}$$
(14)

Rather than writing $(a, b) \in \langle$, we write $a \langle b$. It's weird to think of the symbol \langle as a set, and in practice we don't. We think of it as a way of relating elements in \mathbb{R} . Similarly, for a set A and a relation R, you should think of R as a way of relating elements.

Example 2.2 The natural numbers can be given a precise construction. We write $0 = \emptyset$, $1 = \{0\}$, $2 = \{0, 1\}$, $3 = \{0, 1, 2\}$, and so on. We can now define < on \mathbb{N} as follows:

$$< = \{ (m, n) \in \mathbb{N} \times \mathbb{N} \mid m \in n \}$$

$$(15)$$

This is bizarre, but makes precise what inequality means. Since $3 = \{0, 1, 2\}$, we see that $1 \in 3$, meaning we can write 1 < 3. This is in agreement with the way we intuitively think of the *less than* relation.

Example 2.3 If X is a set, and $R \subseteq \mathcal{P}(X) \times \mathcal{P}(X)$ is defined by:

$$R = \{ (A, B) \in \mathcal{P}(X) \times \mathcal{P}(X) \mid A \subseteq B \}$$
(16)

then R is the *inclusion* relation on the set of all subsets of X.

Since the definition of relation is so general (any subset of $A \times A$), it is often the case the we restrict our attention to special types of relations.

Definition 2.2 (Reflexive Relation) A reflexive relation on a set A is a relation R such that for all $a \in A$, aRa. That is, for all $a \in A$, a is related to itself by R.

Example 2.4 Equality (=) is reflexive, as is inclusion (\subseteq).

Example 2.5 Proper inclusion (\subsetneq) is not reflexive, neither is less than (<) nor greater than (>).

Given a set A, the *diagonal* of $A \times A$ is the set of all ordered pairs (a, a) for all $a \in A$. If we look at $\mathbb{R} \times \mathbb{R}$, the diagonal is the line y = x in the plane, hence the name. A reflexive relation is a relation R that contains the diagonal.

Definition 2.3 (Symmetric Relation) A symmetric relation on a set A is a relation R such that for all $a, b \in A$, aRb if and only if bRa.

Example 2.6 Equality is symmetric. a = b implies b = a.

Example 2.7 Containment (\in) is not symmetric. It is a theorem of set theory that $x \in y$ implies $y \notin x$. The importance of this claim is that it helps us avoid Russell's paradox, one of the reasons for developing set theory in the first place.

Example 2.8 Inclusion is a relation that is reflexive but not symmetric. It is possible for $A \subseteq B$ but $B \not\subseteq A$. For example, $A = \mathbb{Q}$ and $B = \mathbb{R}$.

Definition 2.4 (Transitive Relation) A transitive relation on a set A is a relation R such that for all $a, b, c \in A$, aRb and bRc implies aRc.

Example 2.9 Equality is transitive. This is one of the assumptions dating back to Euclid. If a = b and b = c, then a = c.

Example 2.10 Inequality is also transitive. If a < b and b < c, then a < c.

Example 2.11 Inclusion is transitive. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Example 2.12 Containment does not need to be transitive. Let $a = \emptyset$, $b = \{\emptyset\}$, and $c = \{\{\emptyset\}\}$. Then $a \in b, b \in c$, but $a \notin c$.

Definition 2.5 (Equivalence Relation) An equivalence relation on a set A is a relation R that is reflexive, symmetric, and transitive.

Equivalence relations allow us to define equivalence classes.

Definition 2.6 (Equivalence Class) The equivalence class of an element $a \in A$ with respect to an equivalence relation R is the set [a] defined by:

$$[a] = \{ b \in A \mid aRb \}$$

$$(17)$$

That is, the set of all elements in A related to a by R.

Theorem 2.1. If A is a set, if R is an equivalence relation, and if $a, b \in A$, then [a] = [b] if and only if aRb and bRa.

Proof. Since R is reflexive, $a \in [a]$ and $b \in [b]$. If aRb, then $b \in [a]$, by definition. But R is symmetric, so bRa and hence $a \in [b]$. That is, the sets [a] and [b] both contain a and b. If $c \in [a]$ then aRc. But bRa, and since R is transitive, bRc. Therefore $c \in [b]$. Similarly, $c \in [b]$ implies $c \in [a]$. We have shown that [a] and [b] consist of precisely the same elements, so [a] = [b]. In the other direction, if [a] = [b], then by definition $a \in [b]$ and $b \in [a]$, and hence aRb and bRa.

Definition 2.7 (Quotient Set) The quotient set of a set A with respect to an equivalence relation R is the set A/R defined by:

$$A/R = \{ B \in \mathcal{P}(A) \mid B = [a] \text{ for some } a \in A \}$$
(18)

That is, A/R is the set of all equivalence classes of A with respect to R.

The notation A/R is just notation. We are not dividing sets. Intuitively, we are forming a new set by taking all of the elements $b \in A$ such that $b \in [a]$ and gluing them to a, creating a single element. This will be very important in topology when we talk about quotient spaces.

Example 2.13 We can think of a fraction $\frac{a}{b}$ as an ordered pair $(a, b) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. We do not want $\frac{1}{2}$ and $\frac{2}{4}$ to be different elements, so we need to glue some elements of this product together. That is, $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ is a set of points in the plane \mathbb{R}^2 and the points (1, 2) and (2, 4) are different. We ask how can we say $\frac{a}{b} = \frac{c}{d}$ using only integers? We are trying to define what a rational number is, so it would be circular to use the notation $\frac{a}{b}$ in our argument. We obtain the answer via cross-multiplying. We know that $\frac{a}{b} = \frac{c}{d}$ is true (essentially by definition) when ad = bc. This allows us to define an equivalence relation on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. Let $A = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ and define

$$R = \{ ((a, b), (c, d)) \in A \times A \mid ad = bc \}$$

$$(19)$$

The quotient set A/R is the set of *rational numbers*. The equivalence classes [(1, 2)] and [(2, 4)] are the same since $1 \cdot 4 = 2 \cdot 2$. That is, we have glued together (1, 2) and (2, 4) to form a single object, the fraction $\frac{1}{2}$. We write $[(a, b)] = \frac{a}{b}$ for convenience.