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1 More Cardinality

In the last lecture we showed Card(N) = Card(Z) = Card(Q). A countably
infinite set is a set that can be put into a bijection with N. A countable set is a
set that is either countably infinite or finite. An uncountable set is a set that is
infinite but not countable. We now arrive at our first uncountable set, the real
numbers R. Suppose they are countable. Then there is a bijection f : N — R.
For simplicity, let us assume there is a bijection f : N — (0,1). Then we can
write out this bijection with a list.

J(0) = 0.do,0do,1do,2do,3do ado s - - - (1)
F(1) = 0.dy oy 1dy 2 3y adys . 2)
f(2) = 0.d2odz,1d2,2d2 3d2 4d2 5 . - . (3)
f(3) = 0.d30ds3,1d3 2d3 3d3 4d3 5 . . . (4)
f(4) = 0.daoda,1ds2da3dsadss . .. (5)
f(5) = 0.ds,0ds,1d5,2d5 3d5.4d5 5 - - - (6)

where d,, ,, is the decimal of the m'" number in the n*® decimal place. Since

the bijection is between N and (0, 1), the interger part of each f(n) is zero. We
now show that f is not a bijection by giving a new number that is not on the
list. Define r € (0,1) as follows:

7 = 0.19r17T2r3rars . . . (7)
where
dn n 1 d'"/ n 9
ro =  dnn T1 dnn 7 (8)
0 dpn =9

This number is not equal to f(n) for any n. It is not f(0) since r¢ and dg o are
different. It is not f(1) since ry and dy 1 differ. Similarly, it is not f(n) since ry,
and d,, , are not the same decimal. So r is not on our list, meaning f(n) # r
for any n € N, contradicting the fact that f is a bijection.

There are small gaps here, meaning this is a sketch of proof and not a full proof.
The argument does not take into account the fact that 0.1 = 0.09, for example,
but this can be corrected.



Theorem 1.1 (Cantor’s Theorem). If A is a set, then there is an injective
function f: A — P(A), where P(A) is the power set of A, but there exists no
surjection, and hence no bijection.

Proof. Suppose there is a surjection f: A — P(A). Define B C A by:
B={zecAlz¢ f(x)} (9)

Since f(x) € P(A) for all x € A, it is valid to ask if z € f(z). Since B C A
we have B € P(A) by the definition of power set. But since f: A — P(A) is
a surjection there must be some y € A such that f(y) = B. But then either
y € Bory¢ B. Suppose y € B. If y € B, then y € f(y) since f(y) = B. But
if y € B, then by the definition of B that means y ¢ f(y), a contradiction. So
y ¢ B. But if y ¢ B, then y ¢ f(y) since f(y) = B. But by the definition of
B, ify ¢ f(y), then y € B, a contradiction. So f(y) # B, and hence f is not a
surjection.

There is an injective function f: A — P(A). Define:

f(z) ={z} (10)

Then f(z) = f(y) if and only if {x } = {y }, which is true if and only if x = y,
hence f is injective. O

There is a bijection from P(N) to R. Again, a sketch of proof is given. We’ll
construct a surjection f : P(N) — [0, 1], the closed unit interval. Given a set
A C N, construct the number r € [0, 1] using binary as follows:

f(A) =r=0.rgrira... (11)

where 7, = 1if n € Aand r, = 0if n ¢ A. For example, if A = (), then
f(0)=0.000---=0. If A=N, then f(N) =0.111--- =1. If A= {0, 2,4, ...},
then f(A4) =0.101010.... If A = {1, 2, 3}, then f(A) = 0.01110000.... Since
every number r € [0,1] can be written in binary form in such a way, f is a
surjection. We can reverse this process as well, but again the issue of 1 vs. 0.9
arises and needs correcting. It is possible to do this, but not currently worth
our time investigating.

You may now ask this is a bijection from the natural numbers to the closed unit
interval. What about R? We can construct a bijection g : [0,1] — (0, 1), the
closed unit interval to the open unit interval, via:

% z=0
g(z) = g z= 2% for some n € N (12)
x otherwise

The graph is shown in Fig. 1. We will eventually prove that there is no con-
tinuous bijection f :[0,1] — (0,1). For those interested, try to find a bijection
f:[0,1] — (0,1) that has only finitely many discontinuities.



Figure 1: Bijection from [0, 1] to (0,1)

Using this bijection g, we need a bijection from (0, 1) to R. This is given by:

ha) = 221 (13)

z(l—2)
By composing h o g o f we get a bijection from P(N) to R. This means that
cardinality is transitive.

Theorem 1.2. If Card(A) = Card(B) and Card(B) = Card(C), then Card(A) =
Card(C).

Proof. Since A and B are of the same cardinality, there is a bijection f : A — B.

Similarly, there is a bijection g : B — C. By composing we get a bijection
go f:A— C, meaning Card(A) = Card(C). O

2 Relations

Relations are ways of saying certain elements of a set are related to each other.
There are many relations you use daily in mathematics. Equality (=), less than
(<), greater than (>), less than or equal (<), and greater than or equal (>).



Figure 2: Bijection from (0,1) to R



We’ve also seen relations on sets such as inclusion (C) and proper inclusion
(). Cardinality can also be thought of as a type of relation on sets. The most
general definition of a relation is as follows.

Definition 2.1 (Relation) A relation on a set Aisasubset RCAxA. N
If (a,b) € R we write this as aRb.

Example 2.1 Suppose we know what less than means for real numbers. We
can define < to be the set:

<={(a,b) ER xR |ais less than b} (14)

Rather than writing (a,b) € <, we write a < b. It’s weird to think of the symbol
< as a set, and in practice we don’t. We think of it as a way of relating elements
in R. Similarly, for a set A and a relation R, you should think of R as a way of
relating elements. n

Example 2.2 The natural numbers can be given a precise construction. We
write 0=0,1={0},2={0,1},3={0,1, 2}, and so on. We can now define
< on N as follows:

<={(m,n) e NxN|men} (15)

This is bizarre, but makes precise what inequality means. Since 3 ={0, 1, 2},
we see that 1 € 3, meaning we can write 1 < 3. This is in agreement with the
way we intuitively think of the less than relation. |

Example 2.3 If X is a set, and R C P(X) x P(X) is defined by:
R={(A,B)eP(X)xP(X)|AC B} (16)
then R is the inclusion relation on the set of all subsets of X. |

Since the definition of relation is so general (any subset of A x A), it is often
the case the we restrict our attention to special types of relations.

Definition 2.2 (Reflexive Relation) A reflexive relation on a set A is a
relation R such that for all a € A, aRa. That is, for all a € A, a is related to
itself by R. |

Example 2.4 Equality (=) is reflexive, as is inclusion (C). |

Example 2.5 Proper inclusion (C) is not reflexive, neither is less than (<) nor
greater than (>). |

Given a set A, the diagonal of A x A is the set of all ordered pairs (a,a) for all
a € A. If we look at R x R, the diagonal is the line y = x in the plane, hence
the name. A reflexive relation is a relation R that contains the diagonal.

Definition 2.3 (Symmetric Relation) A symmetric relation on a set A is a
relation R such that for all a,b € A, aRb if and only if bRa. [ |



Example 2.6 Equality is symmetric. a = b implies b = a. |

Example 2.7 Containment (€) is not symmetric. It is a theorem of set theory
that « € y implies y ¢ z. The importance of this claim is that it helps us
avoid Russell’s paradox, one of the reasons for developing set theory in the first
place. |

Example 2.8 Inclusion is a relation that is reflexive but not symmetric. It is
possible for A C B but B € A. For example, A =Q and B = R. ]

Definition 2.4 (Transitive Relation) A transitive relation on a set A is a
relation R such that for all a,b,c € A, aRb and bRc implies aRc. |

Example 2.9 Equality is transitive. This is one of the assumptions dating
back to Euclid. If a = b and b = ¢, then a = c. |

Example 2.10 Inequality is also transitive. If a < band b < ¢, thena <c. H
Example 2.11 Inclusion is transitive. If AC Band BC C,then ACC. N

Example 2.12 Containment does not need to be transitive. Let a = 0, b =
{0}, and c={{0}}. Thena€b,bec, buta¢ec. [ |

Definition 2.5 (Equivalence Relation) An equivalence relation on a set A
is a relation R that is reflexive, symmetric, and transitive. |

Equivalence relations allow us to define equivalence classes.

Definition 2.6 (Equivalence Class) The equivalence class of an element a €
A with respect to an equivalence relation R is the set [a] defined by:

[a) ={be A|aRb} (17)
That is, the set of all elements in A related to a by R. |

Theorem 2.1. If A is a set, if R is an equivalence relation, and if a,b € A,
then [a] = [b] if and only if aRb and bRa.

Proof. Since R is reflexive, a € [a] and b € [b]. If aRb, then b € [a], by definition.
But R is symmetric, so bRa and hence a € [b]. That is, the sets [a] and [b] both
contain a and b. If ¢ € [a] then aRe. But bRa, and since R is transitive, bRc.
Therefore ¢ € [b]. Similarly, ¢ € [b] implies ¢ € [a]. We have shown that [a] and
[b] consist of precisely the same elements, so [a] = [b]. In the other direction, if
[a] = [b], then by definition a € [b] and b € [a], and hence aRb and bRa. O

Definition 2.7 (Quotient Set) The quotient set of a set A with respect to an
equivalence relation R is the set A/R defined by:

A/R={B e P(A)| B =]a] for some a € A} (18)

That is, A/R is the set of all equivalence classes of A with respect to R. [ |



The notation A/R is just notation. We are not dividing sets. Intuitively, we
are forming a new set by taking all of the elements b € A such that b € [qd]
and gluing them to a, creating a single element. This will be very important in
topology when we talk about quotient spaces.

Example 2.13 We can think of a fraction § as an ordered pair (a,b) € Z x (Z\
{0}). We do not want 1 and 2 to be different elements, so we need to glue some
elements of this product together. That is, Z x (Z\ {0}) is a set of points in
the plane R? and the points (1, 2) and (2, 4) are different. We ask how can we
say § = 5 using only integers? We are trying to define what a rational number

is, so it would be circular to use the notation § in our argument. We obtain

the answer via cross-multiplying. We know that § = ¢ is true (essentially by
definition) when ad = be. This allows us to define an equivalence relation on

Zx (Z\{0}). Let A=Z x (Z\ {0}) and define
R={((a,b), (¢c,d)) € Ax A|ad=bc} (19)

The quotient set A/R is the set of rational numbers. The equivalence classes
[(1, 2)] and [(2, 4)] are the same since 1-4 = 2-2. That is, we have glued together
(1, 2) and (2, 4) to form a single object, the fraction 1. We write [(a, b)] = ¢
for convenience. |
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