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1 Metric Spaces

Most of the analysis of the real numbers comes from the absolute value function
| · | : R → R≥0 defined by:

|x| =
{
x x ≥ 0

−x x < 0
(1)

The function d : R × R → R defined by d(x, y) = |x − y| acts as a distance
function. It is the length of the line segment between x and y on the real
line. Many theorems in real analysis repeatedly use three key facts about this
function. First, it is positive-definite. This means that |x − y| is always non-
negative, and |x− y| = 0 if and only if x = y. This is what a distance function
should do, assign a non-negative real number to two points, the distance between
them. Negative distance doesn’t have any meaning, and zero distance means the
points are identical. Second, the function d(x, y) = |x− y| is symmetric. That
is, d(x, y) = d(y, x) for all x, y ∈ R. Again, this is what distance should mean.
The distance from Boston to New York is the same as the distance from New
York to Boston. The last property is very geometrical, the triangle inequality.
It says that for any real numbers x, y, z ∈ R, |x − z| ≤ |x − y| + |y − z|. That
is, the distance from x to z is not greater than the distance from x to y plus
the distance from y to z. This is called the triangle inequality since it mimics
one of the theorems from Euclid’s elements relating lengths of triangles. Euclid
writes that the length of any side of a triangle is not greater than the sum of
the lengths of the other two sides (Fig. 1). To put this into physical terms, the
shortest distance between two points in the plane is the straight line segment
between them. Deviating off of this line results in a longer distance. We take
these three properties and say that this is what distance means. Metric spaces
are sets that have a method of assigning distance between points.

Definition 1.1 (Metric Space) A metric space is an ordered pair (X, d) where
X is a set, and d : X ×X → R is a function such that:

� d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y (Positive
Definite)

1



a

b

c

Figure 1: Geometric Interpretation of the Triangle Inequality

� d(x, y) = d(y, x) (Symmetry)

� d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality)

The function d is called a metric function. ■

For those who wish to go on to geometry, a word of warning. In geometry
one studies Riemannian metrics. These are not metric functions, they do not
measure distances (they measure angles). An author should take care to dif-
ferentiate between the two, calling one a metric, and the other a Riemannian
metric. The author should especially do this because Riemannian metrics create
metrics, called the metric induced by a Riemannian metric. Unfortunately far
too many omit the word Riemannian and just call the function a metric, hoping
it is clear from context which is which. You then get gibberish sentences like
the metric induced by the metric. We most certainly will not get to geometry
in this class, so there should be no confusion (However, a course in Riemannian
manifolds is perfect after this course. We will end on topological manifolds).

Example 1.1 If X = R and d(x, y) = |x−y|, then (X, d) is a metric space. ■

Example 1.2 Define d(x, y) on R2 via:

d(x, y) =
√
(y0 − x0)2 + (y1 − x1)2 (2)

This is the Euclidean distance. It is positive-definite since the inside of the
square root is positive-definite and the square root function is increasing. It is
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symmetric since (x − y)2 = (y − x)2. The hard part is the triangle inequality.
This turns out to be equivalent to showing that ||x+y||2 ≤ ||x||2 + ||y||2 where
||x||2 is the Euclidean length of x:

||x||2 =
√
x2
0 + x2

1 (3)

To see why the triangle inequality is equivalent to this, substitute x − z for x
and z − y for y. So, we need only prove that ||x + y||2 ≤ ||x||2 + ||y||2. We
have:

||x+ y||22 = (x0 + y0)
2 + (x1 + y1)

2 (4)

= x2
0 + x2

1 + 2(x0y0 + x1y1) + y20 + y21 (5)

= ||x||22 + 2(x0y0 + x1y1) + ||y||22 (6)

= ||x||22 + 2x · y + ||y||22 (7)

= ||x||22 + 2 ||x||2 ||y||2 cos(θ) + ||y||22 (8)

≤ ||x||22 + 2 ||x||2 ||y||2 + ||y||22 (9)

= (||x||2 + ||y||2)2 (10)

where θ is the angle between the vectors x and y. By taking the square root
of the first and last lines we obtain the inequality. This makes (R2, d) a metric
space. This is called the two dimensional Euclidean space or the standard metric
on R2. ■

Example 1.3 Let X = R2 and d(x, y) = |x0 − y0| + |x1 − y1|. This is called
the Manhattan metric on R2. The function d is indeed a metric on R2 (prove
this!). It is called the Manhattan metric since this metric is formed by the
following sentence: To move from x to y you must move horizontally (left-
right) or vertically (up-down). You may not move diagonal. This is similar to
how you’d move in Manhattan. You can’t move diagonally because there are
buildings in the way, but you may move horizontally and vertically along the
streets. ■

Example 1.4 The function d : R2 × R2 → R defined by:

d(x, y) = max(|x0 − y0|, |x1 − y1|) (11)

is a metric. This is the metric that describes how a king can move on a chess
board. The distance from the position of a king on the board to another position
is the maximum of the vertical and horizontal distances since the king is allowed
to move horizontally, vertically, and diagonally. ■

Example 1.5 To those who have been to Paris, perhaps you have visited the
Arc de Triomphe. It is surrounded by several roads that all lead radially in-
wards towards the monument, somewhat like spokes on a wheel. To walk from
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Figure 2: Euclidean Metric on R2
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Figure 3: Manhattan Metric on R2
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Figure 4: Paris Metric on R2
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one street to another requires walking towards the Arc de Triomphe and then
outwards along the appropriate street. This allows us to define the Paris metric
on R2. Define d as follows:

d(x, y) =

{
||x− y||2 y = λx for some λ ∈ R
||x||2 + ||y||2 else

(12)

That is, if x and y lie on the same line passing through the origin, their distance
is the usual Euclidean distance. Otherwise to get from x to y you must walk
radially inwards from x to the origin, and then radially outwards from the origin
to y. This makes (R2, d) a metric space. ■

Example 1.6 There’s a Manhattan metric, a Paris metric, and a London met-
ric. If you want to get from point a to point b in England, you take the train.
It always seems that no matter where you’re trying to go, your train will first
make a stop in London. This gives us the London metric. Define d by:

d(x, y) =

{
0 x = y

||x||2 + ||y||2 otherwise
(13)

That is, if x = y, there’s no point getting on the train since you’re already
where you want to be. Otherwise, take the train from x to London (the origin)
and then from London to y. ■

Example 1.7 If X is any set and d : X ×X → R is defined by:

d(x, y) =

{
0 x = y

1 x ̸= y
(14)

Then (X, d) is a metric space. This is called the discete metric. ■

Example 1.8 Consider [a, b] ⊆ R for some a, b ∈ R with a < b and let
C
(
[a, b], R

)
be the set of all continuous functions f : [a, b] → R. Since [a, b] is

closed and bounded, if f ∈ C
(
[a, b], R

)
then f is continuous and by the extreme

value theorem f is bounded above and below, so the integral of f is finite. Given
two function f, g ∈ C

(
[a, b], R

)
we can define d(f, g) by:

d(f, g) =

∫ b

a

|f(x)− g(x)|dx (15)

This makes the set of continuous functions into a metric space. ■

Why require three things for a metric space when you can just as easily require
two. If instead of writing the triangle inequality as d(x, z) ≤ d(x, y) + d(y, z)
we write d(x, z) ≤ d(x, y) + d(z, y), we can prove d is symmetric.

Theorem 1.1. If X is a set and d : X ×X → R is positive-definite and for all
x, y, z ∈ X it is true that d(x, z) ≤ d(x, y) + d(z, y), then d is symmetric and
(X, d) is a metric space.
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Figure 5: Convergent Sequence in a Metric Space

Proof. Letting z = x we have:

d(x, y) ≤ d(x, x) + d(y, x) = d(y, x) (16)

Similarly if we let z = y we get:

d(y, x) ≤ d(y, y) + d(x, y) = d(x, y) (17)

So d(x, y) ≤ d(y, x) and d(y, x) ≤ d(x, y), so d(x, y) = d(y, x) and hence d is
symmetric. Thus, (X, d) is a metric space.

2 Open and Closed Sets

Most of the important properties of metric spaces can be defined by sequences
and convergence.

Definition 2.1 (Sequence) A sequence in a set A is a function a : N → A.
Instead of writing a(n) for the value of n ∈ N, we write an. ■

Definition 2.2 (Convergent Sequence in a Metric Space) A convergent
sequence in a metric space (X, d) is a sequence a : N → X such that there exists
an x ∈ X where for all ε > 0 there is an N ∈ N such that n ∈ N and n > N
implies d(x, an) < ε. x is called a limit of a and we write an → x. ■

Contrast this with the definition of convergent sequences of real numbers. These
are sequences a : N → R where there is an x ∈ R such that for all ε > 0 there is
an N ∈ N where n ∈ N and n > N implies |x− an| < ε. We’ve merely replaced
|x− an| with d(x, an). Like the real numbers, convergence in a metric space is
unique.
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Figure 6: Open Ball in a Metric Space

Theorem 2.1. If (X, d) is a metric space, if a : N → X is a convergent
sequence, and if x, y ∈ X are such that an → x and an → y, then x = y.

Proof. Suppose not. If x ̸= y, then since d is a metric function, d(x, y) > 0. Let
ε = 1

2d(x, y). Then since ε > 0 and an → x, there is an N0 ∈ N such that n ∈ N
and n > N0 implies d(x, an) < ε. But since an → y there is an N1 ∈ N such
that n ∈ N and n > N1 implies d(y, an) < ε. Let N = max(N0, N1). Then
n > N implies d(x, an) < ε and d(y, an) < ε. But by the triangle inequality,

d(x, y) ≤ d(x, aN+1) + d(y, aN+1) (18)

< ε+ ε (19)

=
d(x, y)

2
+

d(x, y)

2
(20)

= d(x, y) (21)

a contradiction. Thus, x = y.

Definition 2.3 (Open Ball) An open ball of radius r centered about x ∈ X
in a metric space (X, d) is the set:

B(X, d)
r (x) = { y ∈ X | d(x, y) < r } (22)

That is, the set of all points y ∈ X that are closer than r away from x. ■

Example 2.1 An open ball in R2 with respect to the Euclidean metric is a

disk. For simplicity, let x = 0. Then B
(R2, ||·||2)
r (0) is the set of all y such that

||y||2 < r. This is the set of all points y = (x, y) such that
√
x2 + y2 < r.

squaring we have x2 + y2 < r2. This is the open disk centered at the origin of
radius r. ■

Example 2.2 In the Manhattan metric, the open ball centered at the origin of
radius r is a diamond. This is the set of points (x, y) such that |x|+ |y| < r. ■
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Figure 7: Open Ball in the Euclidean Plane

Example 2.3 Using the chess king metric, or the maximum metric on R2, an
open ball is a square. Consider an open ball centered about the origin 0. This
is the set of points (x, y) such that max(|x|, |y|) < r. So the points where both
|x| < r and |y| < r. This forms a square in the plane. ■

Example 2.4 The Paris metric does not have the symmetry of the other met-
rics. An open ball centered about the origin is a disk. Open balls centered
about other points look quite different. If x ̸= 0 and if r > ||x||2, then the open
ball centered at x of radius r consists of the disk centered at the origin of radius
r−||x||2 and the open line segment passing radially from the origin through the
point x of length r. If r < ||x||2, the open ball or radius r centered at x is an
open line segment (Fig. 10). ■

Definition 2.4 (Open Subsets) An open subset of a metric space (X, d) is a

set U ⊆ X such that for all x ∈ U there is an ε > 0 such that B
(X,d)
ε (x) ⊆ U . ■

A theorem every student of mathematics must prove in their life is that open
balls are open. It seems almost like the proof comes by definition, but there’s a
bit of work needed.

Theorem 2.2. If (X, d) is a metric space, if x ∈ X, and if r ∈ R+, then

B
(X, d)
r (x) is open.
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Figure 10: Open Balls in the Paris Metric
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Proof. Let y ∈ B
(X, d)
r (x). Let ε = r−d(x, y). Since y ∈ B

(X, d)
r (x), d(x, y) < r

and hence ε > 0. If z ∈ B
(X, d)
ε (y), then:

d(x, z) ≤ d(x, y) + d(y, z) (23)

< d(x, y) + ε (24)

= d(x, y) + r − d(x, y) (25)

= r (26)

and therefore z ∈ B
(X, d)
r (x), and thus B

(X, d)
r (x) is open.

Theorem 2.3. If (X, d) is a metric space, then ∅ is open.

Proof. This is true vacuously. There are no elements x ∈ ∅ such that the
definition of open fails, so we say ∅ is open.

Theorem 2.4. If (X, d) is a metric space, then X is open.

Proof. Let x ∈ X and r = 1. Then, by definition, B
(X, d)
1 (x) ⊆ X, so X is

open.

Theorem 2.5. If (X, d) is a metric space, and if O ⊆ P(X) is such that for
all U ∈ O it is true that U is open, then

⋃O is open.

Proof. Let x ∈ ⋃O. Since x ∈ ⋃O there is a U ∈ O such that x ∈ U . Then by

the definition of O, U is open. Hence there is an r > 0 such that B
(X, d)
r (x) ⊆ U .

But then B
(X, d)
r (x) ⊆ ⋃O, and hence

⋃O is open.

Theorem 2.6. If (X, d) is a metric space, if U and V are open subsets, then
U ∩ V is open.
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Proof. If U ∩V is empty we are done. Suppose x ∈ U ∩V. Since x ∈ U and U is

open, there is an r0 such that B
(X, d)
r0 (x) ⊆ U . Since x ∈ V and V is open there is

an r1 > 0 such that B
(X, d)
r1 (x) ⊆ V. Let r = min(r0, r1). Then B

(X, d)
r (x) ⊆ U

and B
(X, d)
r (x) ⊆ V, and hence B

(X, d)
r (x) ⊆ U ∩ V, so U ∩ V is open.

Open balls completely characterize open subsets of a metric space. To be more
precise, I mean the following theorem.

Theorem 2.7. If (X, d) is a metric space, and if U ⊆ X, then U is open if and
only if there is a set O such that for all V ∈ O it is true that V is an open ball
in X, and such that

⋃O = U .

Proof. If U is open, then for all x ∈ U there is an rx > 0 such that B
(X, d)
rx (x) ⊆

U . Let O be defined by (using the axiom of choice here. I’m choosing rx):

O = {B(X, d)
rx (x) | x ∈ U } (27)

Since x ∈ B
(X, d)
rx (x) for all x ∈ U , U ⊆ ⋃O. But B

(X, d)
rx (x) ⊆ U and hence⋃O ⊆ U . Therefore, ⋃O = U . In the other direction, if U is of this form, then

it is the union of open sets, and hence open.

Definition 2.5 (Limit Point in a Metric Space) A limit point of a subset
A ⊆ X of a metric space (X, d) is a point x ∈ X such that there is a sequence
a : N → A such that an → x. ■

Definition 2.6 (Closed Set in a Metric Space) A closed subset of a metric
space (X, d) is a subset C ⊆ X such that for all x ∈ X such that x is a limit
point of C, it is true that x ∈ C. ■

Theorem 2.8. If (X, d) is a metric space, then ∅ is closed.

Proof. Again, this is vacuously true. There are no points x ∈ ∅ that fail to
satisfy the criterion.

Theorem 2.9. If (X, d) is a metric space, then X is closed.

Proof. For if a : N → X is a convergent sequence, then by definition an → x for
some x ∈ X, and hence X has all of its limit points.

Theorem 2.10. If (X, d) is a metric space, if O ⊆ P(X) is such that for all
C ∈ O it is true that C is closed in X, then

⋂O is closed.

Proof. If the intersection is empty, we’re done. Suppose a : N → ⋂O is a
convergent sequence. Then for all C ∈ O, a : N → C is a convergent sequence.
Suppose the limit is x ∈ X. But C is closed, and hence x ∈ C. Since limits are
unique, this is the same x for all C ∈ O, and hence x ∈ ⋂O, That is,

⋂O is
closed.

Theorem 2.11. If (X, d) is a metric space, then U is open if and only if X \U
is closed.
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Proof. Suppose U is open and let a : N → X \ U be a convergent sequence
converging to x ∈ X. Suppose x /∈ X \ U . Then x ∈ U , and hence there is an

ε > 0 such that B
(X, d)
ε (x) ⊆ U . But then, since an → x, there is an N ∈ N

such that n ∈ N and n > N implies d(x, an) < ε. That is, n > N implies

an ∈ B
(X, d)
ε (x). But an ∈ X \ U for all n ∈ N, a contradiction. So X \ U is

closed. Now, suppose X \ U is closed. Suppose U is not open. Then there is
an x ∈ U such that for all ε > 0 there is an a ∈ X such that d(x, a) < ε but
a /∈ U . In particular, for each n ∈ N there is an an such that d(x, an) <

1
n+1

but an /∈ U . But then an → x. But X \ U is closed and a : N → X \ U is
a convergent sequence, so the limit is in X \ U . But x ∈ U , a contradiction.
Hence, U is open.

Theorem 2.12. If (X, d) is a metric space, then C ⊆ X is closed if and only
if X \ C is open.

Proof. Since X \ (X \ C) = C, this follows from the previous theorem.

Theorem 2.13. If (X, d) is a metric space and if C and D are closed subsets,
then C ∪ D is closed.

Proof. This follows from De Morgan’s laws. C and D are closed and if and only
if X \ C and X \ D are open. But:

X \ (C ∪ D) = (X \ C) ∩ (X \ D) (28)

This is the intersection of two open sets, which is open. So C ∪ D is closed.
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