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1 More on Open and Closed

Sets are not doors. If A ⊆ X is a subset of a metric space (X, d) it does not
need to be true that A is either closed or open. A can be open, A can be closed,
A can be neither open nor closed, and A can be both open and closed.

Example 1.1 If (X, d) is any metric space, then both ∅ and X are open and
closed, simultaneously. �

Example 1.2 In the real line R with the standard metric d(x, y) = |x−y| there
are no proper non-empty subsets that are both open and closed. Open sets are
formed by open intervals (a, b) and the union of such sets. Closed sets are the
complements of these sets. Examples include closed intervals [a, b], single points
{x }, and finite subsets of the real line. There are many other examples not of
this form. The rationals Q are neither closed nor open. It is not open since
(a, b) always contains irrational numbers for a < b, and hence can’t be a subset
of Q. It is not closed since every irrational can be approximated by a sequence
of rationals. �

Example 1.3 Let X be a non-empty set and let d be the discrete metric:

d(x, y) =

{
1 x 6= y

0 x = y
(1)

Then every subset of X is open, and since the complements of open sets are
closed, every set is also closed. To see that every set is open, note that {x } is

open for all x ∈ X. Let r = 1
2 . Then y ∈ B(X, d)

r (x) means d(x, y) < 1
2 . But the

only element that does this is x, so {x } is open. Given A ⊆ X we can write:

A =
⋃
x∈A
{x } (2)

A being the union of open sets, and is thus open. �

Theorem 1.1. If (X, d) is a metric space, then U ⊆ X is open if and only if
for every convergent sequence a : N → X with limit x ∈ U it is true that there
is an N ∈ N such that for all n ∈ N with n > N it is true that an ∈ U .
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Proof. Suppose U is open and a : N→ X converges to x ∈ U . Since x ∈ U and

U is open, there is an ε > 0 such that B
(X, d)
ε (x) ⊆ U . But an → x and hence

there is an N ∈ N such that n ∈ N and n > N implies d(x, an) < ε. Thus

n > N implies an ∈ B(X, d)
ε (x), so an ∈ U . Now, suppose for every convergent

sequence a : N→ X with limit x ∈ U there is an N ∈ N with n ∈ N and n > N
implying an ∈ U . Suppose U is not open. Then there is an x ∈ U such that for
all ε > 0 there is a point y ∈ X such that d(x, y) < ε but y /∈ U . In particular,
for all n ∈ N there is an an such that d(x, an) < 1

n+1 but an /∈ U . Then an → x.
But x ∈ U and hence there is an N ∈ N such that n ∈ N and n > N implies
an ∈ U . But an /∈ U , a contradiction. Therefore, U is open.

2 Subspaces

Many new metric spaces are formed by considering metric spaces we’ve already
constructed and examining subsets of these spaces.

Theorem 2.1. If (X, d) is a metric space, if A ⊆ X, and if dA is the restriction
of d to A×A, then (A, dA) is a metric space.

Proof. For all a, b, c ∈ A it is true that a, b, c ∈ X since A ⊆ X. Hence
dA(a, b) = d(a, b) and so dA is positive-definite, symmetric, and satisfies the
triangle inequality. Thus, (A, dA) is a metric space.

Definition 2.1 (Metric Subspace) A metric subspace of a metric space
(X, d) is a metric space (A, dA) where A is a subset A ⊆ X and dA is the
restriction of d to A×A. �

Example 2.1 Equip R2 with the Euclidean metric and define S1 to be the set
of all x ∈ R2 such that ||x||2 = 1. This is the unit circle in the plane. We turn
this into a metric space by equipping it with the subspace metric from R2. This
is the standard metric on S1. This is shown in Fig. 1. �

Example 2.2 The unit sphere is defined similarly as a subspace of R3. It is
the set of all points x ∈ R3 such that ||x||2 = 1. In general the n dimensional
sphere Sn is the subset of all points in Rn+1 such that ||x||2 = 1. �

If (X, d) is a metric space, if (A, dA) is a metric subspace, and if U ⊆ A is
open with respect to dA, it need not be true that U is open with respect to d.
For example, the real line can be viewed as a subset of the plane by identifying
x ∈ R with (x, 0) ∈ R2. An open subset of the real line is a interval, but open
subsets in the plane are blobs (two dimensional). What is true is the following.

Theorem 2.2. If (X, d) is a metric space, if A ⊆ X and (A, dA) is a metric
subspace, then U ⊆ A is open with respect to dA if and only if there is an open
subset V ⊆ X with respect to d such that U = V ∩A.

Proof. If U is open in A, then for all x ∈ U there is an rx > 0 such that

B
(A, dA)
rx (x) ⊆ U . Define O by:

O = {B(X, d)
rx (x) | x ∈ U } (3)
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Figure 1: S1 as a Subspace of R2
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Figure 2: An Open Subset of S1

Note that these open balls are open balls in (X, d), not (A, dA). Let V =
⋃
O.

Since V is the union of open balls, it is open in X. If x ∈ U , then x ∈ A since

U ⊆ A, and also x ∈ V since x ∈ B(X, d)
rx (x) which is a subset of

⋃
O. Hence

x ∈ V ∩ A, and therefore U ⊆ V ∩ A. Next, suppose x ∈ V ∩ A. Then x ∈ V
and hence there is a y ∈ U such that x ∈ B

(X, d)
ry (y). But y ∈ A, and hence

d(x, y) = dA(x, y), and so x ∈ B(A, dA)
ry (y), and thus x ∈ U . That is, V ∩A ⊆ U ,

and therefore U = V ∩ A. Now suppose U = V ∩ A where V is open in X. Let
x ∈ U . Then x ∈ V ∩ A, and hence x ∈ V. But V is open, and therefore there

is an r > 0 such that B
(X, d)
r (x) ⊆ V. Now given y ∈ B(A, dA)

r (x), by definition
y ∈ A and d(x, y) = dA(x, y). Therefore y ∈ V ∩ A. But U = V ∩ A, so y ∈ U .

Since y ∈ B(A, dA)
r (x) is arbitrary, we have that B

(A, dA)
r (x) ⊆ U , so U is open

in A.

Example 2.3 An open arc in the circle, an arc that does not include the
endpoints, is open. See Fig. 2. �
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3 Continuity

Like most branches of mathematics, there’s a notion of identical metric spaces,
or equivalent metric spaces. The only thing that defines a metric is the set
X and the metric d. If we relabel the points in X, forming a new set Y , but
preserve the distances, then we haven’t really changed the metric space. For
example, we can define on R2 the metric dR2(x, y) to be the Euclidean metric,
dR2(x, y) = ||x− y||2. We can relabel (x, y) = x+ iy and call this the complex
plane, denote it C, and given z = x0 + ix1 and w = y0 + iy1, we could define
dC(z, w) = |z −w| where | · | is the complex absolute value. This is no different
from the Euclidean metric, all we’ve done is relabel everything. We use this to
motivate isometries.

Definition 3.1 (Metric Space Isometry) A metric space isometry from a
metric space (X, dX) to a metric space (Y, dY ) is a function f : X → Y such
that for all x0, x1 ∈ X it is true that:

dX(x0, x1) = dY
(
f(x0), f(x1)

)
(4)

That is, f preserves the metrics. �

Example 3.1 In Euclidean geometry one often ponders isometries of the plane
to itself. It is a classic result that all isometries f : R2 → R2 are combinations of
translations, reflections, and rotations (The so-called glide-reflections are reflec-
tions followed by translations). A translation is a function f : R2 → R2 defined
by f(x) = x+y for some fixed y ∈ R2. Reflections are functions that flip bases.
For example, a reflection about the y axis is the function f(x) = (−x0, x1). A
reflection about the x axis is of the form f(x) = (x0, −x1). Reflections about
other lines through the origin can be defined similarly. Lastly, rotation by an
angle θ is the function defined by:

f(x) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
x0
x1

]
(5)

= (cos(θ)x0 + sin(θ)x1, − sin(θ)x0 + cos(θ)x1) (6)

An isometry f : R2 → R2 is a combination of these operations. �

Theorem 3.1. If (X, dX) and (Y, dY ) are metric spaces, and if f : X → Y is
a metric space isometry, then f is injective.

Proof. For if x0 6= x1, then dX(x0, x1) > 0, and thus dY
(
f(x0), f(x1)

)
=

dX(x0, x1) > 0, so f(x0) 6= f(x1).

Definition 3.2 (Global Metric Space Isometry) A global metric space
isometry from a metric space (X, dX) to a metric space (Y, dY ) is a bijective
metric space isometry f : X → Y . �

Global isometries mean (X, dX) and (Y, dY ) are, in a sense, the same metric
space. Just like R2 and C can be thought of as the same, so can X and Y by
identifying x ∈ X with f(x) ∈ Y and y ∈ Y with f−1(y) ∈ X.
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There is a much weaker notion than isometries for metric spaces, and this notion
is far more useful.

Definition 3.3 (Continuous Function Between Metric Spaces) A con-
tinuous function from a metric space (X, dX) to a metric space (Y, dY ) is a
function f : X → Y such that for every convergent sequence a : N → X with
limit x ∈ X it is true that f(an)→ f(x). �

Using notation from calculus, this says that:

lim
n→∞

f(an) = f
(

lim
n→∞

an
)

= f(x) (7)

This reads nicely as the image of a convergent sequence is a convergent sequence.
Similarly you could say f maps convergent sequences to convergent sequences.

The simplest functions from calculus (constants and the identity) are always
continuous, regardless of the metrics.

Theorem 3.2. If (X, dX) and (Y, dY ) are metric spaces, and if f : X → Y is
a constant function, then f is continuous.

Proof. For let a : N→ X be a convergent sequence. Since f is a contant function
there is a y ∈ Y such that f(x) = y for all x ∈ X. But then f(an) = y for
all n ∈ N, meaning the image of the sequence under f is a constant sequence,
which is in turn a convergent sequence. Hence f is continuous.

Theorem 3.3. If (X, d) is a metric space and if idX : X → X is the identity
function, idX(x) = x, then idX is continuous.

Proof. For if a : N→ X is a convergent sequence, then idX(an) = an, which is
still a convergent sequence. So idX is continuous.

Theorem 3.4. If (X, dX) and (Y, dY ) are metric spaces, and if f : X → Y is
an isometry, then f is continuous.

Proof. For let a : N → X be a convergent sequence with limit x ∈ X. Then
given ε > 0 there is an N ∈ N such that n ∈ N and n > N implies dX(an, x) < ε.
But then for all n > N we have:

dY
(
f(an), f(x)

)
= dX(an, x) < ε (8)

and hence f(an)→ f(x). That is, f is continuous.

This theorem does not reverse. Since isometries must be injective, any non-
injective constant function (i.e., the co-domain has more than two points) would
be continuous but not an isometry.

Theorem 3.5. If (X, dX) and (Y, dY ) are metric spaces, and if f : X → Y is
a function, then f is continuous if and only if for all open V ⊆ Y it is true that
f−1[V] ⊆ X is open.
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Proof. Suppose f is continuous and V ⊆ Y is open. Let U = f−1[V]. Suppose
a : N→ X is such that an → x with x ∈ U . Since an → x and f is continuous,
f(an) → f(x). But since x ∈ f−1[V] it is true that f(x) ∈ V. But V is open,
so there exists an N ∈ N such that n ∈ N and n > N implies f(an) ∈ V. But
then for all n > N , an ∈ U = f−1[V], so U is open. Now, suppose f : X → Y
is such that for all open V ⊆ Y it is true that f−1[V] is open. Let a : N → X
be a convergent sequence that converges to x ∈ X. Suppose f(an) does not
converge to f(x). Then there exists an ε > 0 such that for all N ∈ N there is

an n ∈ N with n > N but dY
(
f(x), f(an)

)
≥ ε. But B

(Y, dY )
ε

(
f(x)

)
is open,

so by assumption the pre-image is open. Letting V = B
(Y, dY )
ε

(
f(x)

)
, we have

that f−1[V] is open. But x ∈ f−1[V] since f(x) ∈ V. Since f−1[V] is open
there is an N ∈ N such that n ∈ N and n > N implies an ∈ f−1[V]. But then
f(an) ∈ V for all n > N which is a contradiction. Therefore, f(an)→ f(x) and
f is continuous.
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