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1 Metric Topology

Definition 1.1 (Metric Topology) The metric topology on a metric space
(X, d) is the set τd ⊆ P(X) such that for all U , U ∈ τd if and only if U is open
in (X, d). That is, τd is the set of all open subsets of (X, d). �

We have seen in previous theorems that the metric topology τd of a metric space
(X, d) has several properties. First, ∅ ∈ τd and X ∈ τd. That is, the empty set
is open and the whole space is open. Secondly, given any subset O ⊆ τd, the
union

⋃
O is an element of τd. That is, the arbitrary union of open sets is open.

Lastly, if U ,V ∈ τd, then U ∩ V ∈ τd. That is, the finite intersection of open
sets is open. We will take these properties and use them to define a topological
space. A topological space is a set X and a subset τ ⊆ P(X) with the four
properties mentioned previously. This will be made clear in later lectures, for
now we want to discuss which properties of a metric space are topological and
which properties are geometric, or metric properties.

Definition 1.2 (Topologically Equivalent Metrics) Topologically equiva-
lent metrics on a set X are metrics d0 and d1 such that their respective metric
topologies τd0 and τd1 are equal, τd0 = τd1 . �

To provide examples of equivalent metrics, it is best to use the following theorem.

Theorem 1.1. If X is a set, and d0 and d1 are metrics on X, then d0 and d1 are
topologically equivalent if and only if for all x ∈ X and r > 0, there is an r0 > 0

and an r1 > 0 such that B
(X, d0)
r0 (x) ⊆ B(X, d1)

r (x) and B
(X, d1)
r1 (x) ⊆ B(X, d0)

r (x).
That is, the open balls can be nested inside of each other.

Proof. If τd0 = τd1 , then B
(X, d0)
r (x) is open in τd1 meaning there is an r1 > 0

such that B
(X, d1)
r1 (x) ⊆ B

(X, d0)
r (x). Similarly, if τd0 = τd1 , then B

(X, d1)
r (x)

is open in τd0 meaning there is an r0 > 0 such that B
(X, d0)
r0 (x) ⊆ B

(X, d0)
r (x).

In the other direction, suppose τd0 and τd1 are such that open balls can be
nested. Let V ∈ τd1 . For all x ∈ V, since V is open, there is an r > 0 such that

B
(X, d1)
r (x) ⊆ V. But then there is an r0 > 0 such that B

(X, d0)
r0 (x) ⊆ B(X, d1)

r (x),

and hence B
(X, d0)
r0 (x) ⊆ V, so V ∈ τd0 . Similarly, if U ∈ τd0 , then for all x ∈ U ,

since U is open, there is an r > 0 such that B
(X, d0)
r (x) ⊆ U . But then there is
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Figure 1: Manhattan Open Sets Nested in Euclidean Open Sets

an r1 > 0 such that B
(X, d1)
r1 (x) ⊆ B(X, d0)

r (x), and hence B
(X, d1)
r1 (x) ⊆ U . That

is, U ∈ τd1 . Therefore, τd0 = τd1 .

Example 1.1 Let (R2, dE) be the Euclidean metric space on the plane, and
(R2, dM ) be the Manhattan metric space. Open balls in the Euclidean metric
are open disks and open balls in the Manhattan metric are open diamonds. We
can nest one inside of the other, showing that the Euclidean and Manhattan
metrics are topologically equivalent. See Figs. 1 and 2. �

Example 1.2 Let (R2, dE) be the Euclidean plane and (R2, dmax) be the max-
imum metric space on the plane (the chess board metric). Open balls in the
Euclidean plane are open disks and open balls in the max metric are open
squares. We can nest one inside the other, meaning the Euclidean metric and
the maximum metric are equivalent on R2 (See Figs. 3 and 4). �

Example 1.3 The Euclidean metric and the Paris metric on R2 are not equiv-
alent. Given a point x ∈ R2, x 6= 0, choose r = ||x||2/2, where ||x||2 is the
standard Euclidean length of the vector x. The open ball centered at x with
radius r is an open line segment going from x−(r, r) to x+(r, r). Open line seg-
ments are not open in the Euclidean metric, so the Paris metric is topologically
different than the Euclidean metric. �
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Figure 2: Euclidean Open Sets Nested in Manhattan Open Sets
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Figure 3: Max Open Sets Nested in Euclidean Open Sets
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Figure 4: Euclidean Open Sets Nested in Max Open Sets

5



Example 1.4 The London metric and the Paris metric are not topologically
equivalent. Given x ∈ R2, x 6= 0, choose r = ||x||2/2. The open ball of radius
r centered about x in the Paris metric, as described before, is an open line
segment in the plane. The open ball centered about x of radius r in the London
metric is just the singleton {x }. To see this, for all other points y 6= x, the
distance in the London metric is:

dL(x, y) = ||x||2 + ||y||2 = 2r + ||y||2 > r (1)

Meaning y is not in the ball of radius r centered about x in the London metric.
So, the ball of radius r centered about x is just {x }. Single points are not open
in the Paris metric, showing the two metrics are not topologically equivalent. �

Example 1.5 The London metric is not topologically equivalent to the discrete
metric. It is true that for every point x 6= 0, the point {x } is open in the London
metric, which certainly seems similar to the discrete metric, but the set {0 } is
not open. An open ball about 0 in the London metric is an open disk, so {0 }
is not open. However, {0 } is open in the discrete metric. �

Topological properties are those that are detected by the topologies of the met-
ric space. Convergence, continuity, open and closed, are all notions that are
topological. As we will see repeatedly throughout the course, homeomorphisms
are functions that preserve topological properties.

Definition 1.3 (Homeomorphism) A homeomorphism from a metric space
(X, dX) to a metric space (Y, dY ) is a bijective continuous function f : X → Y
such that f−1 is continuous. �

Global isometries are functions that preserve all metric properties. Global
isometries are, in particular, homeomorphisms.

Theorem 1.2. If (X, dX) and (Y, dY ) are metric spaces, and if f : X → Y is
a global isometry, then f is a homeomorphism.

Proof. We have proven that isometries are continuous. All we need to do now
is prove that if f : X → Y is a global isometry, then f−1 is also an isometry.
Let y0, y1 ∈ Y . Since f is a global isometry, it is bijective, and hence there are
x0, x1 ∈ X with f(x0) = y0 and f(x1) = y1. But then, since f is an isometry,
we have:

dY (y0, y1) = dY
(
f(x0), f(x1)

)
(2)

= dX(x0, x1) (3)

= dX
(
f−1(x0), f−1(x1)

)
(4)

and hence f−1 is an isometry. But then f and f−1 are continuous, so f is a
homeomorphism.

Similar to how not every continuous function is an isometry, not every home-
omorphism is a global isometry. Homeomorphism is a weaker notion, but also
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far more general and with more applications. Think about the real line. The
only isometries are translations f(x) = x + a, reflections f(x) = −x, and glide
reflections, f(x) = −x + a. Most of the functions used in calculus and physics
are not isometries, but are usually continuous.

2 Completeness

Definition 2.1 (Cauchy Sequences) A Cauchy sequence in a metric space
(X, d) is a sequence a : N → X such that for all ε > 0 there is an N ∈ N such
that given m,n ∈ N with m > N and n > N , it is true that d(an, am) < ε. �

Cauchy sequences are sequences where the points an start to get closer and
closer together as n increases. Convergent sequences are, in particular, Cauchy
sequences.

Theorem 2.1. If (X, d) is a metric space, and if a : N → X is a convergent
sequence, then a is a Cauchy sequence.

Proof. Let ε > 0. Since a : N → X is convergent, there is an x ∈ X with
an → x. But then there is an N ∈ N such that for all n ∈ N with n > N it is
true that d(an, x) < ε

2 . But then for m > N and n > N we have:

d(am, an) ≤ d(am, x) + d(an, x) <
ε

2
+
ε

2
= ε (5)

and therefore a is a Cauchy sequence.

Since the points an are getting closer and closer together it is natural to ask if
the converse of this theorem is true as well. That is, if a : N → X is a Cauchy
sequence in a metric space (X, d), is a also a convergent sequence?

Example 2.1 Define a : N → Q by a0 = 1, a1 = 1.4, a2 = 1.41, a3 = 1.414,
and an is the first n decimals of

√
2. This is a Cauchy sequence, given m < n,

d(am, an) is less than 10−m, which can be made arbitrarily small. It does not
converge in Q. The limit we want to say this converges to is

√
2, but

√
2 is not

a rational number, so in reality there is no limit of this sequence. �

The problem with Q is it has a lot of holes, these are the irrational numbers. If
we fill in those holes we get the real numbers. This idea gives rise to the notion
of complete metric spaces.

Definition 2.2 (Complete Metric Space) A complete metric space is a
metric space (X, d) such that for every Cauchy sequence a : N → X, it is true
that a is a convergent sequence. �

The real numbers are complete, with the usual metric d(x, y) = |x− y|. Given
a bounded set A ⊆ R, meaning there is an M ∈ R such that for all x ∈ A it is
true that |x| < M , the real numbers have the property that A has a least upper
bound and a greatest lower bound. That is, numbers r and s such that r is a
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lower bound, all x ∈ A are such that r ≤ x, and s is an upper bound, all x ∈ A
are such that x ≤ s, but moreover r is the largest possible lower bound, and s
is the smallest possible upper bound. The rationals do not have this property.
Given the set A = {x ∈ Q | x2 < 2 }, there is no least upper bound. If you give
me a rational number that is an upper bound for A, I can find a smaller rational
number that is also an upper bound. The least upper bound of this set is

√
2,

but again, this is not a rational number. This least upper bound property can
be used to show that the real numbers are complete. First, a Cauchy sequence
is bounded. Given a : N → R a Cauchy sequence, the points an are getting
really close together, so it would be impossible for the sequence to diverge off
to infinity. Using this we consider the set of all real numbers r where there are
infinitely many an less than r. Since the an are bounded, this set is non-empty
and bounded above, so there is a least upper bound. Using a bit of work, you
can then show that this Cauchy sequence must converge to this least upper
bound, and viola, you have proven that the real numbers are complete.

Completeness motivates a more topological notion, compactness. We’ll first
introduce a few more metric notions before heading into this topic.

Definition 2.3 (Bounded Metric Space) A bounded metric space is a metric
space (X, d) such that there is an M > 0 such that for all x, y ∈ X it is true
that d(x, y) < M . �

Example 2.2 The real line is not bounded with the standard metric. Given
any M > 0, choose x = 0 and y = M + 1. Then d(x, y) = |x − y| = M + 1
which is greater than M . �

Example 2.3 The real line with the arctan metric d(x, y) = |atan(x)−atan(y)|,
is bounded with bound M = π. �

Example 2.4 The circle S1 with the subspace metric from R2 is bounded, any
number M > 2 suffices as a bound. �

Is boundedness a topological property? That is, if d0 and d1 are equivalent
metrics on X, and if d0 is unbounded, is d1 also unbounded?

Theorem 2.2. If (X, d) is a metric space, then there exists a topologically
equivalent metric ρ such that (X, ρ) is a bounded metric space.

Proof. Let ρ : X ×X → R be defined by:

ρ(x, y) =
d(x, y)

1 + d(x, y)
(6)

ρ is a metric on X. It is positive-definite since the denominator is always positive
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and the numerator is positive-definite. It is symmetric since:

ρ(y, x) =
d(y, x)

1 + d(y, x)
(7)

=
d(x, y)

1 + d(x, y)
(8)

= ρ(x, y) (9)

Lastly, the triangle inequality. There are two cases. Case 1, d(x, y) ≤ d(x, z)
and d(y, z) ≤ d(x, z). We get:

ρ(x, z) =
d(x, z)

1 + d(x, z)
(10)

≤ d(x, y) + d(y, z)

1 + d(x, z)
(11)

=
d(x, y)

1 + d(x, z)
+

d(y, z)

1 + d(x, z)
(12)

≤ d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)
(13)

= ρ(x, y) + ρ(y, z) (14)

Case 2, d(x, z) ≤ d(x, y) or d(x, z) ≤ d(y, z). Since the function f(x) = x
1+x is

strictly increasing on the set [0,∞) we get ρ(x, z) ≤ ρ(x, y) or ρ(x, z) ≤ ρ(y, z),
and hence ρ(x, z) ≤ ρ(x, y) + ρ(y, z). This metric is topologically equivalent.

Given r > 0, let rd = r. Then if y ∈ B(X, d)
rd (x), we have:

ρ(x, y) =
d(x, y)

1 + d(x, y)
< d(x, y) < rd = r (15)

and hence y ∈ B
(X, ρ)
r (x). That is, B

(X, d)
rd (x) ⊆ B

(X, ρ)
r (x). If r < 1, let

rρ = r
1−r . If y ∈ B(X, ρ)

rρ (x), then (since x
1−x is strictly increasing for 0 < x < 1):

d(x, y) =
ρ(x, y)

1− ρ(x, y)
<

rρ
1− rρ

= r (16)

so y ∈ B(X, d)
r (x), and hence B

(X, ρ)
rρ (x) ⊆ B

(X, d)
r (x). If r ≥ 1, let r′ = 1

2 and

rρ = r′

1−r′ . Since r′ < r, B
(X, d)
r′ (x) ⊆ B(X, d)

r (x) and hence B
(X, ρ)
rρ ⊆ B(X, d)

r (x).
By the theorem at the start of these notes, (X, d) and (X, ρ) are topologically
equivalent. Moreover, since x

1+x is bounded on [0,∞), (X, ρ) is a bounded
metric space.

Definition 2.4 (Totally Bounded Metric Space) A totally bounded metric
space is a metric space (X, d) such that for all ε > 0 there are finitely many
points a0, . . . , aN such that:

X =

N⋃
n=0

B(X, d)
ε (an) (17)
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That is, the set of ε balls centered about the points an completely cover the
metric space. �

Theorem 2.3. If (X, d) is a totally bounded metric space, then (X, d) is a
bounded metric space.

Proof. Let (X, d) be totally bounded, and let ε = 1. There exists finitely many
points a0, . . . , aN such that

X =

N⋃
n=0

B(X, d)
ε (an) (18)

Let r be the maximum value of d(an, am) for all 0 ≤ m,n ≤ N , and let M =
r + 2. Let x, y ∈ X be arbitrary. There are two points am, an such that

x ∈ B(X, d)
1 (am) and y ∈ B(X, d)

1 (an) since these ε balls cover the entirety of X.
But then:

d(x, y) ≤ d(x, am) + d(am, an) + d(an, y) < 1 + r + 1 = M (19)

so M is a bound for (X, d).

The converse need not be true.

Example 2.5 Equip R with the discrete metric:

d(x, y) =

{
0 x = y

1 x 6= y
(20)

The metric space (R, d) is bounded by 2. It is not totally bounded. Given
ε = 1

2 , the only way to cover R with ε balls is by placing an ε ball about every
real number r ∈ R, so we can’t possibly cover R with finitely many ε balls with
the discrete metric, even though the space is bounded. �

Theorem 2.4 (Bolzano’s Theorem). If a : N→ R is a sequence, then there
is monotone subsequence. That is, a subsequence ak such that for all n ∈ N it
is true that akn ≤ akn+1

(monotone increasing), or such that for all n ∈ N it is
true that akn ≥ akn+1

(monotone decreasing).

I’ll give a sketch of proof via a picture. For simplicity, suppose a : N → R+ is
a sequence of positive numbers. Place a flashlight infinitely far away at −∞ on
the x axis. Given the element an ∈ R of the sequence, draw a straight line from
(n, an) to (n, 0). These act as walls. With the light shining from behind, some
walls will be lit and some will not. If there are infinitely many walls that recieve
some light, then we must have a monotone subsequence. Simply go to the next
wall that is lit up, and keep doing this to obtain your subsequence. If not, there
is a tallest wall that keeps all the other walls in the shade. Start there and go
to the next tallest wall, and then the next tallest wall, and so on, obtaining a
monotone subsequence. See Fig. 5.
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Figure 5: Sketch of Proof of Bolzano’s Theorem

The full proof of this theorem belongs in a course on real analysis, but the idea
of the proof is essentially the idea discussed above. We will use it to prove the
Bolzano-Weierstrass theorem, a core theorem to real analysis that completely
motivates the idea of compact metric spaces.

Theorem 2.5 (Bolzano-Weierstrass Theorem). If a : N→ R is a bounded
sequence, then there is a convergence subsequence ak.

Proof. Let a : N → R be a bounded sequence. By Bolzano’s theorem there
is a monotone subsequence ak. Suppose ak is monotone increasing (the idea
is symmetric if ak is monotone decreasing). Since a is a bounded sequence,
ak is also a bounded sequence. Let x ∈ R be the least upper bound of this
subsequence. Let ε > 0. Since x is the least upper bound, x− ε is not an upper
bound of the sequence (otherwise x is not the least upper bound since x − ε
is smaller). But if x − ε is not an upper bound, then there is an N ∈ N with
akN > x − ε. But ak is monotone increasing, so for all n > N , akn ≥ akN and
therefore akn > x− ε. But also akn ≤ x since x is the least upper bound. That
is, for all n > N we have x − ε < akn ≤ x. Therefore, for n > N , we have
|x− akn | < ε, and hence akn converges to x.

We take this idea and use it to define compactness.

Definition 2.5 (Compact Metric Space) A compact metric space is a metric
space (X, d) such that for every sequence a : N → X there is a convergent
subsequence ak. �
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