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1 The Equivalence of Compactness Theorem

The generalization of the Heine-Borel theorem for general metric spaces needs
stronger notions than just closed and bounded. If we replace closed with complete
and bounded with totally bounded, we get the generalized Heine-Borel theorem.

Theorem 1.1 (Generalized Heine-Borel Theorem). If (X, d) is a metric
space, then it is compact if and only if it is complete and totally bounded.

Proof. We have already proven that compact implies complete. Now let’s show
compact implies totally bounded. Suppose not. Then there is an ε > 0 such
that no matter what finite collection of points a0, . . . , an you pick, there is

another point an+1 where an+1 /∈ B(X, d)
ε (ak) for all 0 ≤ k ≤ n. Inductively this

defines a sequence a : N → X. But (X, d) is compact, so there is a convergent
subsequence ak. But convergent sequences are Cauchy sequences, and therefore
there there is an N ∈ N such that m,n > N implies d(akn , akm) < ε. But
by construction d(akn , akm) ≥ ε for all distinct n,m ∈ N, a contradiction.
So (X, d) is totally bounded. Now, suppose (X, d) is complete and totally
bounded. Let a : N → X be any sequence. Since (X, d) is totally bounded,

there are finitely many points b0, . . . , bN such that the open balls B
(X, d)
1 (bk)

completely cover X. Since there are infinitely integers and only finitely many
open balls, there must be a point bk such that infinitely many n ∈ N are such

that an ∈ B(X, d)
1 (bk). Let k0 ∈ N be such a value with ak0 ∈ B(X, d)

0 (bk). Again

by total boundedness, we can cover B
(X, d)
1 (bk) with finitely many open balls

B
(X, d)
1/2 (c`) with points c` ∈ B(X, d)

1 (bk). Since infinitely many integers n ∈ N
are such that an ∈ B(X, d)

1 (bk) and there are only finitely many balls covering
this set, one of these open balls must again be such that there are infinitely

many integers n ∈ N with an ∈ B
(X, d)
1/2 (c`). Let k1 be such that k1 > k0

and ak1 ∈ B(X, d)
1/2 (c`). Inductively we get a subsequence ak with the property

that akn+1
is contained inside the ball of radius 1

n+1 centered at akn . This

sequence is Cauchy since d(akm , akn) is bounded by 1
N+1 where N = min(m, n).

But (X, d) is complete, so this sequence converges. Hence a has a convergent
subsequence.
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Figure 1: A Non-Totally Bounded Metric Space

We can describe this theorem pictorially. Not totally bounded means there is
an ε > 0 such that no finite set of open balls of radius ε completely cover X.
We get Fig. 1. This sequence a : N → X has the property that for all n 6= m
we have d(an, am) ≥ ε, so a cannot possible have any convergent subsequences,
violating compactness. The latter direction, that totally bounded and complete
implies compact, is pictorial as well. We cover our metric space in open balls
of radius 1. This is possible since the space is totally bounded. We look at
our sequence a : N → X. There must be an open ball with infinitely many
an contained inside it since there are infinitely many integers and only finitely
many open balls. This is shown in Fig. 2. Our sequence is the points in red,
and the red ball is an open ball that contains infinitely many of the an. Note,
there could be two such balls, or three. In this figure there’s only one. We
then zoom in on this open ball and cover it in finitely many balls of radius 1

2
(Fig. 3). We continue and obtain a sequence of nested open balls of radius
1

n+1 and a subsequence of points akn such that akn lies in the nth ball. The
subsequence must be Cauchy since the distance between two points is bounded
by the diameter (twice the radius) of the 1

n+1 balls, which tends to zero. Since
the space is complete, this subsequence converges.

Compactness is a topological property, but we’ve yet to describe it in terms of
open sets. We use the generalized Heine-Borel theorem to get one step closer
to this, but first we need a definition.

Definition 1.1 (Open Cover of a Metric Space) An open cover of a metric
space (X, d) is a subset O ⊆ τd, where τd is the metric topology, such that⋃O = X. That is, for all x ∈ X, there is an open set U ∈ O such that
x ∈ U . �

Open covers are the topological tool needed to define compactness. The slogan
for compactness is that every open cover has a finite subcover, a phrase that

2



X

Figure 2: A Sequence in a Totally Bounded Metric Space

X

Figure 3: Zooming in on a Totally Bounded Metric Space

X

Figure 4: Convergent Subsequence in on a Totally Bounded Metric Space
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is dependent solely on the notion of open sets. To prove the equivalence of
compactness theorem, we first need a lemma.

Theorem 1.2 (Lebesgue’s Number Lemma). If (X, d) is compact, and if
O is an open cover of (X, d), then there is a δ > 0 such that for all x ∈ X there

is a U ∈ O such that B
(X, d)
δ (x) ⊆ U .

Proof. Suppose not. Then for all n ∈ N there is an an such that B
(X, d)

1
n+1

(an) is

not contained entirely inside of U for any U ∈ O. But (X, d) is compact, so
there is a convergent subsequence ak. Let x ∈ X be the limit, akn → x. Since
O is an open cover, there is a U with x ∈ U . But U is open, so there is an ε > 0

such that B
(X, d)
ε (x) ⊆ U . But since akn → x there is an N0 ∈ N such that

kn > N0 implies d(x, akn) < ε
2 . Let N1 ∈ N be such that N1 + 1 > 2

ε and let

N = max(N0, N1) + 1. Then y ∈ B(X, d)
1

N+1

(aN ) implies:

d(x, y) ≤ d(x, aN ) + d(aN , y) <
ε

2
+
ε

2
= ε (1)

and hence y ∈ B
(X, d)
ε (x). That is, B

(X, d)
1

N+1

(aN ) ⊆ B
(X, d)
ε (x). But the ε ball

around x is contained inside of U , so B
(X, d)

1
N+1

(aN ) ⊆ U , which is a contradiction,

completing the proof.

Theorem 1.3 (The Equivalence of Compactness Theorem). If (X, d) is
a metric space, then (X, d) is compact if and only if for every open cover O of
(X, d) there exists a finite open cover ∆ ⊆ O.

Proof. If (X, d) is compact and O is an open cover, then by the Lebesgue
number lemma there is a δ > 0 such that for all x ∈ X there is a Ux such that
B

(X, d)
δ (x) ⊆ Ux. Since (X, d) is compact, it is totally bounded, and hence there

are finitely many points x0, . . . , xN such that the δ balls centered at xn cover
X. But then the set:

∆ = {Ux0
, . . . , UxN

} (2)

is a finite open cover that is a subset of O. In the other direction, suppose
(X, d) is such that every open cover O contains a finite subset ∆ ⊆ O that is
also an open cover of (X, d). Given ε > 0, create the set O by:

O = {B(X, d)
ε (x) | x ∈ X } (3)

O is an open cover of (X, d), and hence there is a finite open cover ∆ ⊆ O.
But then (X, d) can be covered by finitely many balls of radius ε, so (X, d)
is totally bounded. Next, suppose (X, d) is not complete. There there is a
Cauchy sequence a : N → X that does not converge. Then for all x ∈ X there
is a εx > 0 such that for all N ∈ N there exists n > N with d(x, an) ≥ ε. Let
O be defined by:

O = {B(X, d)
εx/2

(x) | x ∈ X } (4)
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O is an open cover of (X, d), so there is a finite open cover ∆ ⊆ O. Let
x0, . . . , xN be the finite set of points such that:

X =

N⋃
n=0

B
(X, d)
εn/2

(xn) (5)

where εn = εxn
. Let ε = min(ε0, . . . , εN ). Since a : N → X is a Cauchy

sequence, there is an N ∈ N such that n,m > N implies d(am, an) < ε/2. Since
the open balls of radius εk/2 centered at xk cover the metric space, there is
some xk, 0 ≤ k ≤ N , such that d(aN+1, xk) < εk/2. But then for all n > N we
have:

d(xk, an) ≤ d(xk, aN+1) + d(an, aN+1) <
εn
2

+
ε

2
≤ εn (6)

Which is a contradiction since for all N ∈ N there is an n > N such that
d(xk, an) ≥ εn by the definition of εn. Therefore (X, d) is complete. Since
(X, d) is complete and totally bounded, by the generalized Heine-Borel theorem
it is compact.

5


	The Equivalence of Compactness Theorem

