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1 Topological Spaces

Definition 1.1 (Topology on a Set) A topology on a set X is a subset
τ ⊆ P(X) such that:

1. ∅ ∈ τ

2. X ∈ τ

3. For every O ⊆ τ it is true that
⋃O ∈ τ

4. For all U ,V ∈ τ it is true that U ∩ V ∈ τ .

That is, τ contains the empty set and the whole set, it is closed under arbitrary
unions, and closed under the intersection of two elements. �

Theorem 1.1. If X is a set, if τ is a topology on X, and if O ⊆ τ is finite,
then

⋂O ∈ τ .

Proof. We prove by induction on the size of O. The base case is true by the
definition of a topology. Suppose the claim is true for n ∈ N and let O ⊆ τ have
n+ 1 elements. Label them U0, . . . , Un. Then, by induction, the set V defined
by:

V =

n−1⋂
k=0

Uk (1)

is in τ . But then
⋂O = V ∩ Un, the intersection of two elements of τ , which is

an element of τ . Hence,
⋂O ∈ τ .

Definition 1.2 (Topological Space) A topological space is an ordered pair
(X, τ) where X is a set and τ is a topology on X. �

Example 1.1 If X is a set, then P(X), the power set of X, is a topology on X.
The power set is trivially closed under arbitrary unions and finite intersections,
and moreover ∅ ∈ P(X) and X ∈ P(X). This is the discrete topology on X. �

Example 1.2 If X is a set, then the set τ = { ∅, X } is a topology on X. This
has several names, the chaotic topology, the trivial topology, and the indiscrete
topology. �
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Example 1.3 Take X = { 0, 1, 2 } and τ =
{
∅, { 0 }, { 0, 1, 2 }

}
. The set τ is

a topology on X. The sets are all nested since ∅ ⊆ { 0 } ⊆ { 0, 1, 2 }, so it is
closed under unions and intersections. �

In metric spaces we used the metric d to define openness. Here, we use the
topology.

Definition 1.3 (Open Set in a Topological Space) An open set in a topo-
logical space (X, τ) is an element U ∈ τ . �

In the metric setting we were able to use sequences to define limit points and
closed sets. This gave us a theorem that closed sets are just the complements of
open sets. Since we lack a metric, we take this and use it to define closed sets
in a topological space.

Definition 1.4 (Closed Set in a Topological Space) A closed set in a
topological space (X, τ) is a set C ⊆ X such that X \ C is open. That is, a set
C such that X \ C ∈ τ . �

Theorem 1.2. If (X, τ) is a topological space, then U ⊆ X is open if and only
if X \ U is closed.

Proof. Suppose U is open. Then by definition, X \ U is closed. Now, suppose
X \ U is closed. Then by the definition of closed sets, X \ (X \ U) is open. But
by the double complement law, U = X \ (X \ U), and hence U is open.

Example 1.4 Do not confuse open for not-closed and do not confuse not-open
for closed. These are distinct notions. It is possible to be open, closed, both, or
neither. Let X be a set and let τ = P(X), the discrete topology on X. Then
every subset is open, and by the previous theorem, every subset is closed. Now
let τ = { ∅, X }. Then every non-empty proper subset is not open, and hence
every non-empty proper subset is not closed. These two examples show it is
possible for U ⊆ X to be both open and closed, and for V ⊆ X to be neither
open nor closed. It completely depends on the topology τ . �

Topological spaces are direct generalizations of metric spaces. Every metric
space is also a topological space.

Theorem 1.3. If (X, d) is a metric space, and if τd is the metric topology,
then (X, τd) is a topological space.

Proof. We have proven that ∅ and X are metrically open, so ∅, X ∈ τd. More-
over, the intersection of two open sets in a metric space is open, as is the union
of arbitrarily many open sets. That is, τd is a topology on X, and (X, τd) is a
topological space.

Example 1.5 The standard topology on the real line R, the metric topology
induced by the metric d(x, y) = |x − y|, denoted τR, is such that every proper
non-empty subset U ⊆ R is either open, closed, or neither, but not both. That
is, the only subsets of R that are both open and closed are ∅ and R. This isn’t
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too easy to show, it is essentially the statement that the real line is connected,
but we don’t have the vocabulary to prove such a claim yet. Still, it is worth
knowing this property when trying to intuitively understand open and closed
sets. �

A natural question is whether or not all topological spaces arise from metrics.
This is false. The indiscrete topology on a set X containing at least two points
can’t come from a metric. For suppose X is a set with a, b ∈ X and a 6= b.
Suppose d is any metric. Setting ε = d(a, b)/2, the open ball around a of radius
ε is a metrically open subset that contains a but does not contain b. But in the
indiscrete topology τ = { ∅, X }, the only open sets are the empty set (which

B
(X, d)
ε (a) is not empty since ε > 0 and hence a ∈ B

(X, d)
ε (a)) and the whole

space X (and B
(X, d)
ε (a) 6= X since b /∈ B(X, d)

ε (a)). So the indiscrete topology
cannot come from a metric.

One of the problems with the indiscrete topology is that it lacks the Haus-
dorff property. In Felix Hausdorff’s original definition of topological spaces he
required points in the space to be able to be separated by disjoint open sets.
That is, given x, y ∈ X with x 6= y, Hausdorff required there to be open sets U
and V such that x ∈ U , y ∈ V, and U ∩ V = ∅. We take Hausdorff’s property
and use it to define Hausdorff topological spaces (also see Fig. 1).

Definition 1.5 (Hausdorff Topological Space) A Hausdorff topological
space is a topological space (X, τ) such that for all x, y ∈ X, x 6= y, there
exists U ,V ∈ τ such that x ∈ U , y ∈ V, and U ∩ V = ∅. �

There are reasons we take the more general definition as the definition of a
topological space. There are certain operations that can be performed on a
topological space (such as glueing points together) that can take a Hausdorff
space (X, τ) and transform it into a non-Hausdroff space (but it’ll still be a
topological space). Also many non-Hausdorff topological spaces have found their
way into the mathematical world with applications to physics and geometry.
In algebraic geometry, the Zariski topology is non-Hausdorff, and in general
relativity, the space of light rays in a spacetime can be non-Hausdorff, depending
on the topology of the spacetime.

Metric spaces have the Hausdorff property, but since we’ve moved on to topol-
ogy, it is better to speak of metrizable spaces. These are topological spaces
where the topology τ comes from some metric d.

Definition 1.6 (Metrizable Topological Space) A metrizable topological
space is a topological space (X, τ) such that there exists a metric d on X such
that τ = τd, where τd is the metric topology from d. �

Every metric space we’ve examined is an example of a metrizable topological
space. In particular, the real line, Cartesian or complex plane, Euclidean space,
Paris plane, London plane, discrete metric spaces, all of that. We’ve also found
a non-metrizable space, the indiscrete topology on a set containing at least
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Figure 1: The Hausdorff Condition

two points. Some of the central theorems of point-set topology tell us when
a topological space is metrizable. Hausdorff alone is not enough. We will see
plenty of Hausdorff spaces that can not come from a metric. The converse is
true, however. Every metrizable space is Hausdorff.

Theorem 1.4. If (X, τ) is a metrizable topological space, then it is Hausdorff.

Proof. Since (X, τ) is metrizable, there is a metric d such that τ = τd, where
τd is the metric topology from d. Let x, y ∈ X with x 6= y. To prove (X, τ) is
Hausdorff we must find disjoint open sets U and V such that x ∈ U and y ∈ V.

Let ε = d(x, y)/2 and define U = B
(X, d)
ε (x) and V = B

(X, d)
ε (y). Since x 6= y

and d is a metric, it is true that d(x, y) > 0 and therefore ε is positive. But
then U and V are open sets with x ∈ U and y ∈ V, since open balls are open.
Suppose z ∈ U ∩ V. Then:

d(x, y) ≤ d(x, z) + d(z, y) < ε+ ε = d(x, y) (2)

And thus d(x, y) < d(x, y), a contradiction. So z /∈ U ∩ V, and therefore
U ∩ V = ∅. Thus, (X, τ) is Hausdorff.

See Fig. 2 for the idea behind the proof. With this we can rigorously prove
that the indiscrete topology on a set X that has at least two distinct points
a, b ∈ X cannot possibly come from a metric. This is done by observing that, if
τ = { ∅, X }, then (X, τ) is non-Hausdorff, and since it is non-Hausdorff, it can’t
be metrizable since metrizable topological spaces are Hausdorff. Given a ∈ X,
the only open set in τ that contains a is X (since a /∈ ∅). But b ∈ X as well, so
there are not two open sets U and V with a ∈ U , b ∈ V, and U ∩ V = ∅. That
is, (X, τ) is not Hausdorff, meaning it is not metrizable. Topological spaces are
far more general than metric spaces.

Example 1.6 Let’s intuitively try to imagine what the indiscrete topology on
R looks like. The indiscrete topology τ = { ∅, R } says the only non-empty
open set is the entire real line R. That is, all of the points in the real line are
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Figure 2: Metrizable Implies Hausdorff

very very close to each other, essentially indistinguishable. Topologically it is
impossible to tell two points in the line apart. This is hard to imagine, and
your brain probably pictures a single point. But the space (R, τ) is not the
same as a single point, the set R still has infinitely many points. This is hard to
imagine, and fortunately such bizarre topological spaces like (R, τ) rarely find
their way into applications. Spaces like this usually serve as counterexamples
to claims (such as the claim that every topological space comes from a metric.
The topological space (R, τ) is a counterexample). �

Example 1.7 Now ponder the discrete topology on R, τ = P(R). Here, every
subset is open, so in particular given x, y ∈ R, the sets {x } and { y } are open.
The way to picture this space is as a bunch of scattered points with empty space
between them. �

There is a weaker notion than Hausdorff that has found it’s way into physics
and geometry, the notion of a Fréchet topological space.

Definition 1.7 (Fréchet Topological Space) A Fréchet topological space is
a topological space (X, τ) such that for all x, y ∈ X, x 6= y, there exists U ,V ∈ τ
such that x ∈ U , y ∈ V, and x /∈ V, y /∈ U . �

See Fig. 2 for a visual. This modifies the Hausdorff condition. Instead of
requiring U and V to be disjoint (as in the Hausdroff case), we only require U
to include x and not y, and V to include y and not x. Every Hausdorff space is,
in particular, Fréchet.

Theorem 1.5. If (X, τ) is a Hausdorff topological space, then it is a Fréchet
topological space.

Proof. Let x, y ∈ X, x 6= y. Since (X, τ) is Hausdorff, there exists open sets
U ,V ∈ τ such that x ∈ U , y ∈ V, and U ∩ V = ∅. But since x ∈ U , it must be
true that x /∈ V since U ∩ V = ∅. But since y ∈ V, it must be true that y /∈ U
since U ∩ V = ∅. So U and V are such that x ∈ U , y ∈ V, and x /∈ V, y /∈ U . So
(X, τ) is a Fréchet topological space.
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Figure 3: The Fréchet Condition

A word of warning. There are three types of spaces that are called Fréchet
spaces. Maurice René Fréchet was a very prolific mathematician. In the study
of topological vector spaces one studies Fréchet spaces. In general topology
one studies Fréchet topological spaces and Fréchet-Urysohn topological spaces.
Fréchet also invented the idea of metric spaces, but fortunately the mathematical
community has universally adopted the term metric space, rather than name
another type of space after Fréchet. To reduce confusion, Fréchet topological
spaces are often called T1 spaces, and Hausdorff topological spaces are sometimes
called T2. It is far more common to just say Hausdorff, and this Tn notation
seems to be mostly historical.

Example 1.8 (Finite Complement Topology) Not every Fréchet topolog-
ical space is Hausdorff. The space of light rays in a spacetime, as alluded to
earlier, need not be Hausdorff, but light rays always form a Fréchet topological
space. A simpler example is the finite complement topology on the real line.
Define a set U ⊆ R to be open if and only if R \ U is a finite set, or if U = ∅.
The collection τ of all such sets is a topology on R. Since R \ R = ∅, which is
finite, we see that R ∈ τ . The empty set was intentionally included, so ∅ ∈ τ .
If U ,V ∈ τ , then:

R \ (U ∩ V) = (R \ U) ∪ (R \ U) (3)

by the De Morgan law. Since this is the union of two finite sets, it is finite, and
hence τ is closed under the intersection of two elements. Lastly, if O ⊆ τ , then:

R \
⋃
U∈O
U =

⋂
U∈O

R \ U (4)

If O is empty, then this intersection is R, and R is open. If O is non-empty,
then there is some V ∈ O. But then, by the definition of intersection:⋂

U∈O
R \ U ⊆ R \ V (5)
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which is a finite set, so the intersection is a subset of a finite set, and is therefore
finite itself. This shows

⋃O ∈ τ , so τ is a topology. (R, τ) is not Hausdorff.
Given any non-empty U ,V ∈ τ , since R \ U and R \ V are finite, and since R
is infinite, U ∩ V is non-empty. (R, τ) is a Fréchet topological space, however.
Given x 6= y, let U = R \ { y } and V = R \ {x }. Then x ∈ U since x 6= y,
but y /∈ U . Also, y ∈ V, but x /∈ V. But U and V are open since their
complements contain one point, and are hence finite. This shows (R, τ) is a
Fréchet topological space. �

Example 1.9 (Countable Complement Topology) Define τ on R to be
the set of all U ⊆ R such that R \ U is countable (that is, finite or countably
infinite), or U is the empty set. This is a topology on R. The empty set and R
are elements of τ since R \R = ∅ is countable, and ∅ was deliberately included.
Given U ,V ∈ τ , the intersection is also included since:

R \ (U ∩ V) = (R \ U) ∪ (R \ V) (6)

which is the union of countable sets, and is therefore countable. By a similar
argument to the finite complement topology, the union of any collection O ⊆ τ
is also an element of τ . The space (R, τ) is not Hausdorff, but it is a Fréchet
topological space. It is not Hausdorff since for any non-empty U ,V ∈ τ , the
complements R\U and R\V are countable. The real numbers are uncountable,
meaning there must be an element common to both U and V, showing (R, τ)
cannot be Hausdorff. To show it is Fréchet we use the same construction as
before. Given x, y ∈ R, x 6= y, we define U = R\{ y } and V = R\{x }, showing
(R, τ) has the Fréchet property. �

The construction used in both of these examples relies on the fact that R \ {x }
is an open subset for any real number x ∈ R in both the finite and countable
complement topologies. To phrase this differently, the proof requires that {x }
is a closed set. This is what our intuition tells us. Singleton sets should always
be closed. In a metric space (X, d), given x ∈ X, the set {x } is indeed closed
since the only sequence a : N → {x } is the constant sequence an = x, and
this does indeed converge to x, showing that {x } has all of its limit points.
This property does not exist for all topological spaces. The real line R with
the indiscrete topology τ = { ∅, R } lacks this feature. The only closed sets
are ∅ and R, so in particular, given x ∈ R, it is not true that {x } is closed.
Fréchet topological spaces (and hence Hausdorff topological spaces) do not lack
this feature.

Theorem 1.6. If (X, τ) is a Fréchet topological space, and if x ∈ X, then the
set {x } is closed.

Proof. For all y ∈ X, y 6= x, there is an open set Uy ∈ τ such that x /∈ Uy and
y ∈ Uy. Define O by:

O = {Uy ∈ τ | y ∈ X and y 6= x } (7)

Since O is a collection of open sets,
⋃O is open. Since for all y ∈ X with y 6= x

the set Uy is contained in O, we have that y ∈ ⋃O. But also for every open set
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U in O, x /∈ U by construction, and hence x /∈ ⋃O. Therefore
⋃O = X \ {x }.

But then {x } is the complement of an open set, and is therefore closed.

The converse of this theorem is true as well, and this is what we used to show that
the finite complement and countable complement topologies on R are Fréchet
topological spaces.

Theorem 1.7. If (X, τ) is a topological space, and if for all x ∈ X it is true
that {x } is closed, then (X, τ) is a Fréchet topological space.

Proof. For given x, y ∈ X, x 6= y, define U = X \ { y } and V = X \ {x }. Then
x ∈ U since x 6= y, and y ∈ V since y 6= x. But also x /∈ V and y /∈ U . Since
{x } and { y } are closed, by hypothesis, the sets U and V are the complements
of closed sets and are therefore open. Thus, (X, τ) is a Fréchet topological
space.

Example 1.10 (Standard Topology on R) Let τR, the standard topology on
R, be defined as the set of all U ⊆ R such that x ∈ U implies there is an ε > 0
such that for all y ∈ R with |x − y| < ε, it is true that y ∈ U . Then (R, τR)
is a topological space, and moreover it is a metrizable topological space since
it stems from the standard Euclidean metric d(x, y) = |x − y| defined on R.
Since this is metrizable, (R, τR) is a Hausdorff topological space and a Fréchet
topological space. �

Let τF denote the finite complement topology on R, τC the countable comple-
ment topology on R, and τR the standard topology on R. Since a finite set is
countable, we instantly have that τF ⊆ τC . But also, since (R, τR) is a metriz-
able, and therefore Hausdorff, and thus a Fréchet topological space, points {x }
with x ∈ R are closed in τR. Since the finite union of closed sets is still closed,
we see that all finite subsets of R are closed in τR, and therefore sets whose
complement is finite are open in τR. But then τF ⊆ τR. There is no comparison
between τC and τR. The set (0, 1) is open in τR but not τC since the complement
of (0, 1) is (−∞, 0] ∪ [1, ∞), and this is not countable. Moreover, the set of
all irrational numbers R \Q is open in τF since the complement is the rational
numbers Q and this is countable. The irrationals are not open in τR since for
any irrational x and for any ε > 0 there is a rational number y with |x− y| < ε.
This notion of comparing topologies allows us to generate new topologies. In
particular, if we are given a collection of topologies on a set X, we can construct
a new topology by looking at the intersection over this collection.

Theorem 1.8. If X is a set, and if T ⊆ P
(
P(X)

)
is a non-empty set such that

for all τ ∈ T it is true that τ is a topology on X, then
⋂
T is a topology on X.

Proof. Since for all τ ∈ T , τ is a topology, we have that ∅ ∈ τ and X ∈ τ , and
since T is non-empty, we conclude that ∅ ∈ ⋂T and X ∈ ⋂T . If U ,V ∈ ⋂T ,
then for all τ ∈ T , it is true that U ,V ∈ τ . But all τ ∈ T are topologies, so
U ∩ V ∈ τ for all τ , so U ∩ V ∈ ⋂T . If O ⊆ ⋂T , then for all τ ∈ T we have
O ⊆ τ . But then, since τ is a topology,

⋃O ∈ τ . Since this is true for all τ ∈ T
we have that

⋃O ∈ ⋂T . So
⋂
T is a topology.
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Given a set X, we use this theorem to define the topology generated by any
subset B ⊆ P(X). We collect the smallest topology that contains B as a
subset. There is always a topology that contains B as a subset since P(X) is a
topology. We write T as the set of all topologies τ on X with B ⊆ τ and then
write τ(B) =

⋂
T .

Definition 1.8 (Generated Topology) The topology on a set X generated
by a collection B ⊆ P(X) is the set τ(B) defined by:

τ(B) =
⋂
T (8)

where T is the set of all topologies τ on X such that B ⊆ τ . �

What we are doing is taking a collection of subsets B ⊆ P(X) that we want to
be open. However, this collection might not be a topology itself. We may need
to add more sets to ensure we have the intersection and union properties that
topologies enjoy. τ(B), the generated topology, does precisely this.
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