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1 Bases and Subbases

The topology on a set X generated by a collection of subsets B ⊆ P(X) gives
us the notion of subbasis.

Definition 1.1 (Subbasis of a Topology) A subbasis of a topology τ on a set
X is a set B ⊆ P(X) such that τ = τ(B), where τ(B) is the topology generated
by B. ■

A comment on this definition. Some require that B also covers the set X.
That is, for all x ∈ X there is some U ∈ B such that x ∈ U . To me this is
slightly superfluous. If you are given a topology τ and a collection B such that
τ(B) = τ , you can get a new collection B̃ that covers X via B̃ = B ∪ {X }.
That is, take your original collection and just throw the entire set in. Since a
topology requires the whole space to be open, we see that τ(B) = τ(B̃). That
is, the topology generated by B is the same as the topology generated by B̃.
The benefits of requiring or omitting this new constraint are scarce. On the one
hand, you can now say that the empty set serves as a subbasis of the indiscrete
topology since τ(∅) = { ∅, X }. On the other, you may want a subbasis to also
serve as an open cover in a theorem, and it may be nice to not have to explicitly
say that the subbasis is an open cover every time.

With a subbasis you take a collection of subsets of X and declare that you want
these sets to be open. The topology from this subbasis B is the smallest topology
that contains B as a subset. This is done to define many new topological spaces
that we can’t easily define explicitly using a formula or rule for the open sets.

Example 1.1 The standard topology τR on R, the metric topology from

d(x, y) = |x− y| (1)

has as a subbasis the collection of all open intervals. Let B be defined by:

B = { (a, b) ⊆ R | a, b ∈ R and a < b } (2)

The topology generated by this set is the standard topology on R. This collection
B is not a topology. It lacks the union criterion. If a, b, c, d ∈ R and a < b <
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Figure 1: The Union of Open Intervals of the Real Line

c < d, the open intervals (a, b) and (c, d) do not overlap, meaning the union
(a, b)∪ (c, d) is two disjoint open intervals, which is not itself an open interval.
This is shown in Fig. 1. ■

Example 1.2 (The Countable Extension Topology) Let τC by the count-
able complement topology on R and τR the standard Euclidean topology. The
countable extension topology is the topology τE = τ(τC ∪ τR). That is, the
topology generated by the union of the countable complement and standard
topologies. This space is not easy to describe explicitly in terms of what the
open sets are precisely, but it is easy to say what a subbasis is. All open in-
tervals and all sets whose complement is countable create a subbasis for this
space. This space serves as a counterexample to the claim Hausdorff implies
metrizable. The countable complement extension topology is Hausdorff since
τR ⊆ τE and τR is Hausdorff, but it is not metrizable. This space lacks a lot of
the properties of metrizable spaces. It is not first countable, not regular, not
normal, not perfectly normal, and not paracompact. We’ll discuss all of these
ideas soon enough. ■

A stronger notion than subbasis is that of a basis. Bases in topological spaces
are very similar to bases in vector spaces. A basis is a collection of open sets
that spans the topology. Every element of the topology can be written as the
sum (union) of elements of the basis.

Definition 1.2 (Basis for a Topology) A basis for a topology τ on a set X
is a set B ⊆ τ such that B is an open cover of (X, τ) that generates τ and for
all U ,V ∈ B and for all x ∈ U ∩ V there is a W ∈ B such that x ∈ W and
W ⊆ U ∩ V. ■

Theorem 1.1. If (X, τ) is a topological space and B ⊆ τ , then B is a basis if
and only if for all U ∈ τ there is an O ⊆ B such that

⋃O = U .

Proof. Suppose B ⊆ τ is such that for all U ∈ τ there is an O ⊆ B such that⋃O = U . Setting U = X shows that B is an open cover of (X, τ), the first
property of a basis. Given U ,V ∈ B, and any x ∈ U ∩ V, since U ∩ V is open
there is some O ⊆ B such that

⋃O = U ∩ V. But since x ∈ U ∩ V, and since⋃O = U ∩ V, there must be some W ∈ O such that x ∈ W. But then x ∈ W
and W ⊆ U∩V, the third property of a basis. Lastly we must show the topology
generated by B is indeed τ . Since every element of τ can be written as the union
of elements in B, we see that the topology generated by B contains τ . But τ
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Figure 2: Condition for a Basis

itself is a topology that contains B, and hence τ contains the topology generated
by B. We conclude that τ is identical to the topology generated by B.

Now, let τ ′ be the set of all unions of subsets of B. That is:

τ ′ = {
⋃

O | O ⊆ B } (3)

If we can prove τ = τ ′, we are done, since then every open set U ∈ τ can
be written as the union of elements of B. We do this by proving that τ ′ is a
topology, and that every topology containing B must have τ ′ as a subset, and
hence the topology generated by B is precisely τ ′. Since B generates τ , we then
see that τ = τ ′. To start, ∅ ∈ τ ′ since we can choose O = ∅. Next, since B is
an open cover, choosing O = B we see that X ∈ τ ′. Suppose U ,V ∈ τ ′. Then
there are OU ,OV ⊆ B such that U =

⋃OU and V =
⋃OV . Let O = OU ∩ OV .

Then
⋃O ⊆ U ∩V. Let’s reverse this. If x ∈ U ∩V, then x ∈ U and x ∈ V, and

hence there is some WU ∈ OU such that x ∈ WU and some WV ∈ OV such that
x ∈ WV . But then WU and WV are elements of B, and x is common to their
intersection, so there is some W ∈ B such that x ∈ W and W ⊆ WU ∩WV . But
then W ∈ OU and W ∈ OV , so W ∈ O, and therefore x ∈ ⋃O. Thus we have
shown that U ∩ V ⊆ ⋃O and we may conclude that the two sets are indeed
equal. τ ′ is therefore closed to finite intersections. Lastly, arbitrary unions. If
O ⊆ τ ′, for all U ∈ O there is some OU ⊆ B such that U =

⋃OU . By collecting
all elements of B belonging to one of these sets we form a new set O′ ⊆ B with
the property that

⋃O′ =
⋃O, and hence τ ′ is closed under arbitrary unions. τ ′

is hence a topology. Since topologies must be closed under arbitrary unions, if
τ ′′ is a topology containing B we see that τ ′ ⊆ τ ′′, and hence τ ′ is the topology
generated by B. Since τ is also the topology generated by B, we have τ = τ ′.
Hence every element of τ can be written as the union of elements of B.

Theorem 1.2. If (X, τ) is a topological space, and if B ⊆ τ is a basis, then for
all U ⊆ X, U ∈ τ if and only if there is an O ⊆ B such that U =

⋃O.
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Figure 3: Open Intervals in R Form a Basis

Proof. The previous theorem shows that if B is a basis, then we can write U ∈ τ
via U =

⋃O for some O ⊆ B. In the other direction, if U =
⋃O for some

O ⊆ B, then since B is a basis it is a subset of τ , and hence U is the union of a
collection of open sets which is therefore open.

Example 1.3 Open intervals in R form a basis, as well as a subbasis, for the
standard topology. Indeed, every basis is also a subbasis for any topology τ on
a set X. Given two open sets U ,V ⊆ R and a point x ∈ U ∩ V, since U ∩ V is
open, there is some ε > 0 such that for all y ∈ R, |x− y| < ε implies y ∈ U ∩ V.
That is, the open interval (x− ε, x+ ε) sits inside the set U ∩ V, showing that
the collection of open intervals forms a basis for the topology of R. This is
easier to picture if U = (a, b) and V = (c, d) with a < b, c < b, and c < d. The
intersection of (a, b) and (c, d) is the open interval (c, b) (See Fig. 3). Given
any point x ∈ (c, d), the interval (c, b) is a basis element and fits inside of
(a, b) ∩ (c, d). ■

Example 1.4 If (X, τ) is a metrizable space, and if d is a metric on X such
that τ = τd, then the set of all open balls in (X, d) centered at all points of all
radii forms a basis. That is, we may define:

B = {B(X, d)
r (x) ⊆ X | x ∈ X and r > 0 } (4)

The set B is a basis for the topology τ = τd. ■

Example 1.5 (The Radial Interval Topology) LetX = R2 be the Cartesian
plane. The radial interval topology is defined on X by giving it the following
basis B. If L is an open line segment that does not include the origin but is
contained on a line that passes through the origin, then L ∈ B. If U ⊆ R2 is
a collection of open line segments through the origin, each of which contains
the origin, then U ∈ B. The set B is a basis for a topology, and this topology
τR is the radial interval topology on the Cartesian plane. It definitely has the
feeling of the Paris plane, but it is not. If we let τP be the topology of the
Paris plane, the topology induced by the Paris metric dP , then τP ⊆ τR. This
inclusion does not reverse. Take the open interval in the x axis between the
points (−1, 0) and (1, 0) in the plane. This contains the origin and is an open
interval, so it is included in the basis B, and hence is included in the topology
τR. However, open balls about the origin in the Paris plane are disks, just like
in the Euclidean plane. So this open interval containing the origin is not open
in the Paris plane. This example serves as a counterexample to the following
claim. If (X, τ) is a metrizable topological space, and if (X, τ̃) is a topological
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space such that τ ⊆ τ̃ , then (X, τ̃) is metrizable. This is false. Ideas like this
occur quite often. If τ ⊆ τ̃ and (X, τ) is Hausdorff, then (X, τ̃) is Hausdorff,
this is true. It is natural to think a similar claim might hold for metrizable
spaces, but it does not. The Paris plane is metrizable, it comes from the Paris
metric. The radial plane is not metrizable, even though τP ⊆ τR. ■
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