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1 Closure, Interior, and Boundary

In previous lectures we used large collections of topologies to generate a new
one. In particular, we took a collection of subsets B ⊆ P(X), and looked at the
set T of all topologies τ on X such that B ⊆ τ . This set T is non-empty since
P(X) ∈ T . We then created a new topology via the intersection

⋂
T . This is

the generated topology. We now use a similar idea, but instead of collections of
topologies, we look at collections of open and closed sets. We’ve seen some laws
about open sets, these are the rules dictated by the definition of a topology.
Using the De Morgan law’s we get similar statements about closed sets.

Theorem 1.1. If (X, τ) is a topological space, then ∅ is closed.

Proof. Since X is open and ∅ = X \X, ∅ is closed.

Theorem 1.2. If (X, τ) is a topological space, then X is closed.

Proof. Since ∅ is open and X = X \ ∅, X is closed.

Theorem 1.3. If (X, τ) is a topological space, and if C, D ⊆ X are closed,
then C ∪ D is closed.

Proof. Since C and D are closed, X \ C and X \ D are open. But then:

X \ (C ∪ D) = (X \ C) ∩ (X \ D) (1)

which is the intersection of two open sets, which is therefore open, so X \(C∪D)
is open. But then C ∪ D is closed.

Theorem 1.4. If (X, τ) is a topological space, and if O ⊆ P(X) is such that
for all C ∈ O it is true that C is closed, then

⋂
O is closed.

Proof. If O is empty, then
⋂
O = ∅, which is closed. Otherwise we may write:⋂

O =
⋂
C∈O
C =

⋂
C∈O

(
X \ (X \ C)

)
= X \

⋃
C∈O

(X \ C) (2)

Since all C are closed, X \ C is open, so this union is open, meaning
⋂
O is the

complement of an open set and is therefore closed.
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Theorem 1.5. If (X, τ) is a topological space, and if O ⊆ P(X) is a finite set
such that for all C ∈ O it is true that C is closed, then

⋃
O is closed.

Proof. We prove by induction. The base case is true by a previous theorem.
Suppose the statement is true for all such O with n elements. Now, let O be
a set of n+ 1 closed sets. That is, we may write O = { C0, . . . , Cn }. Define D
via:

D =

n−1⋃
k=0

Ck (3)

Then D is the union of n closed sets, and by the induction hypothesis it is
closed. But then: ⋃

O =

n⋃
k=0

Ck = D ∪ Cn (4)

which is the union of two closed sets, which is closed. Hence, by induction,
⋃
O

is closed for any finite collection of closed sets.

We use the intersection property to define closure. Given any subset A ⊆ X
in a topological space (X, τ) there is at least one closed set containing A since
A ⊆ X and X is closed. The closure of A is the smallest closed set containing
A. We can be very precise about this.

Definition 1.1 (Closure of a Set) The closure of a subset A ⊆ X in a
topological space (X, τ) is the set Clτ (A) defined by:

Clτ (A) =
⋂
{ C ⊆ X | C is closed and A ⊆ C } (5)

That is, the smallest closed set containing A. �

Theorem 1.6. If (X, τ) is a topological space and A ⊆ X, then A ⊆ Clτ (A).

Proof. Let O be the set of all closed sets containing A. This set is non-empty
since X ∈ O. Given any element C ∈ O we have A ⊆ C by definition. Hence,
A ⊆

⋂
O. But Clτ (A) =

⋂
O, completing the proof.

Theorem 1.7. If (X, τ) is a topological space, and if A ⊆ X, then Clτ (A) is
closed.

Proof. Since Clτ (A) is the intersection of closed sets, it is closed.

Theorem 1.8. If (X, τ) is a topological space, then C ⊆ X is closed if and only
if Clτ (C) = C.

Proof. If C = Clτ (C), then C is closed since Clτ (C) is closed. In the other
direction, if C is closed, then C is a closed set that contains C since C ⊆ C. But
then Clτ (C) ⊆ C. But C ⊆ Clτ (C) is also true, so C = Clτ (C).

Theorem 1.9. If (X, τ) is a topological space, and if A ⊆ X, then:

Clτ
(
Clτ (A)

)
= Clτ (A) (6)
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Proof. Since Clτ (A) is closed, we have that Clτ
(
Clτ (A)

)
= Clτ (A) by the pre-

vious theorem.

Theorem 1.10. If (X, τ) is a topological space, if A,B ⊆ X, then:

Clτ (A ∪B) = Clτ (A) ∪ Clτ (B) (7)

Proof. Since Clτ (A) and Clτ (B) are closed, and since A ⊆ Clτ (A) and B ⊆
Clτ (A), we have that Clτ (A)∪Clτ (B) is a closed set (since it is the union of two
closed sets) that contains A ∪B. Hence Clτ (A ∪B) ⊆ Clτ (A) ∪ Clτ (B). But a
closed set that contains A∪B is also a closed set that contains A, and a closed set
that contains A∪B is also a closed set that contains B, so Clτ (A) ⊆ Clτ (A∪B)
and Clτ (B) ⊆ Clτ (A ∪ B). Thus, Clτ (A) ∪ Clτ (B) ⊆ Clτ (A ∪ B). Therefore,
Clτ (A ∪B) = Clτ (A) ∪ Clτ (B).

Theorem 1.11. If (X, τ) is a topological space, then Clτ (∅) = ∅.

Proof. This follows since ∅ is closed, and the closure of a closed set is itself.

Theorem 1.12. If (X, τ) is a topological space, then Clτ (X) = X.

Proof. This also follows since X is closed.

Theorem 1.13. If (X, τ) is a topological space, if A,B ⊆ X, and if A ⊆ B,
then Clτ (A) ⊆ Clτ (B).

Proof. Let TA be the set of all closed subsets of X that contain A, and similarly
define TB . Since A ⊆ B, if C ⊆ X is a closed subset such that B ⊆ C, since
inclusion is transitive we have A ⊆ C. That is C ∈ TB implies C ∈ TA, and hence
TB ⊆ TA. Intersections are order reversing, and hence

⋂
TA ⊆

⋂
TB , meaning

Clτ (A) ⊆ Clτ (B).

Example 1.1 Take R with the standard topology. Let Q be the set of all
rational numbers. The closure of Q is all of R. Every real number can be
written as a limit point of Q since we may approximate any x ∈ R with a
convergent sequence of rational numbers. Because of this ClτR(Q) = R. �

Example 1.2 In the real line R with the standard topology τR, given a, b ∈ R
with a < b, the closure of (a, b) is the set [a, b]. In a metric space you can
obtain the closure of a set by adding all of the limit points (points that can be
approximated via sequences) of the set. Since a and b are limit points of (a, b),
we see that ClτR

(
(a, b)

)
= [a, b]. �

The interior of a set uses similar ideas, but using open sets and unions.

Definition 1.2 (Interior of a Set) The interior of a subset A ⊆ X in a
topological space (X, τ) is the set Intτ (A) defined by:

Intτ (A) =
⋃
{U ∈ τ | U ⊆ A } (8)

That is, the largest open set that is contained inside of A. �
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Theorem 1.14. If (X, τ) is a topological space and A ⊆ X, then Intτ (A) ⊆ A.

Proof. Since Intτ (A) is the union over open sets that are contained in A, the
union is contained in A, meaning Intτ (A) ⊆ A.

Theorem 1.15. If (X, τ) is a topological space and A ⊆ X, then Intτ (A) is
open.

Proof. Since Intτ (A) is the union of open sets, it is open.

Theorem 1.16. If (X, τ) is a topological space, and if U ⊆ X, then U ∈ τ if
and only if Intτ (U) = U .

Proof. If U = Intτ (U), then U is equal to an open set, and so is open. In the
other direction, if U is open, then U is an open set that is contained in U since
U ⊆ U . But then U ⊆ Intτ (U). But Intτ (U) ⊆ U , so U = Intτ (U).

Theorem 1.17. If (X, τ) is a topological space, and if A ⊆ X, then:

Intτ
(
Intτ (A)

)
= Intτ (A) (9)

Proof. Since Intτ (A) is open, we have that Intτ
(
Intτ (A)

)
= Intτ (A) by the

previous theorem.

Theorem 1.18. If (X, τ) is a topological space, and if A,B ⊆ X, then:

Intτ (A ∩B) = Intτ (A) ∩ Intτ (B) (10)

Proof. Since Intτ (A ∩ B) is an open set that is contained inside of A, we have
Intτ (A ∩B) ⊆ Intτ (A). But Intτ (A ∩B) is also an open set contained inside of
B, so Intτ (A∩B) ⊆ Intτ (B). But then Intτ (A∩B) ⊆ Intτ (A)∩ Intτ (B). Since
Intτ (A) and Intτ (B) are open, Intτ (A) ∩ Intτ (B) is open. But this is an open
set that is contains inside of A ∩B, meaning Intτ (A) ∩ Intτ (B) ⊆ Intτ (A ∩B).
Hence, Intτ (A ∩B) = Intτ (A) ∩ Intτ (B).

Theorem 1.19. If (X, τ) is a topological space, then Intτ (∅) = ∅.

Proof. Since ∅ is open, it is equal to its interior.

Theorem 1.20. If (X, τ) is a topological space, then Intτ (X) = X.

Proof. This also follows from the fact that X is open.

Theorem 1.21. If (X, τ) is a topological space, if A,B ⊆ X, and if A ⊆ B,
then Intτ (A) ⊆ Intτ (B).

Proof. If x ∈ Intτ (A), then there is an open set U ⊆ A such that x ∈ U . But
since A ⊆ B we have U ⊆ B, and since U is open it is true that U ⊆ Intτ (B).
Therefore x ∈ Intτ (B), so Intτ (A) ⊆ Intτ (B).
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Example 1.3 Let A = Q as a subset of the standard topology on R. The
interior IntτR(Q) is empty. The only open subset U ⊆ Q is the empty set. Given
any x ∈ Q and any positive ε > 0 there are points y ∈ R such that y is irrational
and |x− y| < ε. So there are no open balls centered about any rational points
that contain only rational numbers, meaning IntτR(Q) = ∅. �

Example 1.4 Given the standard topology on R, τR, the interior of the closed
interval [a, b] with a < b is the open interval (a, b). This is the largest open
subset of [a, b]. �

Example 1.5 Let X = [0, 1] and τX be the topology induced by the subspace
metric. That is, given the standard metric d(x, y) = |x− y| on R, we create the
subspace metric dX(x, y) = d(x, y) for all x, y ∈ X. This induces a topology
on [0, 1]. What is the interior of [0, 1] with respect to the topology τX? It
is tempting to say the interior is (0, 1), but this is false. Do not confuse the
topology τR with the topology τX . In R, the interior of [0, 1] is indeed (0, 1). In
τX the interior of [0, 1] is [0, 1]. We are not considering X = [0, 1] as a subset
of the real line anymore, but rather as it’s own topological space (X, τX). In
this topological space the number 2 does not exist, nor does −1. The entire
space X is open in τX , so IntτX (X) = X. �

Definition 1.3 (Topological Boundary) The boundary of a subset A ⊆ X
in a topological space (X, τ) is the set ∂τ (A) = Clτ (A) \ Intτ (A). �

Boundaries are always closed. This is because the set difference of an open set
from a closed set is always closed.

Theorem 1.22. If (X, τ) is a topological space, if U ∈ τ , and if C is closed,
then C \ U is closed.

Proof. Since U , C ⊆ X, we can use the following fact from set theory. If A, B,
and C are sets, and if A,B ⊆ C, then:

A \B = A ∩ (C \B) (11)

We have (with A = C, B = U , and C = X):

C \ U = C ∩ (X \ U) (12)

But U is open, so X \ U is closed. But C is closed, so this is the intersection of
two closed sets, which is closed. Therefore, C \ U is closed.

Theorem 1.23. If (X, τ) is a topological space, and if A ⊆ X, then ∂τ (A) is
closed.

Proof. Applying the previous theorem, since Clτ (A) is closed and Intτ (A) is
open, ∂τ (A) = Clτ (A) \ Intτ (A) is closed.
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Figure 1: Interior, Closure, and Boundary

2 Sequences and Convergence

Convergence in a metric space required the metric, but we can alter the def-
inition to only use open sets. In a metric space (X, d), we said a : N → X
converges to x ∈ X, written an → x, if for all ε > 0 there is an N ∈ N such
that n ∈ N and n > N implies d(x, an) < ε. Worded differently, the sequence
is eventually contained inside the ε ball centered at x for all ε > 0. ε balls are,
in particular, open sets, so we can say that an → x if for every open set U ⊆ X
such that x ∈ U , there is an N ∈ N such that n ∈ N and n > N implies an ∈ U .
This final definition, which is equivalent to the metric one, relies only on open
sets and can be phrased in a topological space.

Definition 2.1 (Convergent Sequence in a Topological Space) A conver-
gent sequence in a topological space (X, τ) is a sequence a : N → X such that
there is an x ∈ X such that for all U ∈ τ with x ∈ U there is an N ∈ N such
that for all n ∈ N with n > N it is true that an ∈ U . We write an → x. �

The first theorem we proved in a metric space was that limits are unique, mean-
ing we can say the limit of the sequence. This is not true in a general topological
space. This is a very important distinction. In metric spaces we used sequences
to define continuity. We can still use this in topological space. Given (X, τX)
and (Y, τY ), we can require a function f : X → Y to be such that if a : N→ X
is a convergent sequence such that an → x with x ∈ X, then f(an) is a conver-
gent sequence in Y and f(an)→ f(x). This type of function does indeed get a
name, it’s called a sequentially continuous function. It is inadequate to describe
general continuity in a general topological space. The following examples should
show why.

Example 2.1 Equip R with the indiscrete topology, τ = { ∅, R }. Let a : N→
R be any sequence. Then for all x ∈ R, the sequence a converges to x. Let’s
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prove this. To show an → x we need to show that for all U ∈ τ with x ∈ U
there is an N ∈ N such that n ∈ N and n > N implies an ∈ U . But the only
open sets in τ are ∅ and R. So if x ∈ U , then U 6= ∅, so U = R. Pick N = 0.
Then for all n ∈ N with n > N , since a : N → R is a sequence in R, we have
that an ∈ R. This shows that an → x regardless of x ∈ R. �

Example 2.2 There’s nothing special about R for the previous example, the
set is just more concrete for visualization. If X is a set, and τ = { ∅, X } is the
indiscrete topology on X, then given any sequence a : N→ X, and any x ∈ X,
it is true that an → x. �

Example 2.3 Let X = N and τ be the set of all Zn, n ∈ N, together with N.
That is:

τ = {Zn | n ∈ N } ∪ {N } (13)

(N, τ) is a topological space. Let a : N→ N be the sequence:

an =

{
1 n is even

2 n is odd
(14)

Does an converge to 0? No, let U = Z1 = { 0 }. Then an is never contained
in the set U , so an can not converge to 0. Does an converge to 1? Also no.
Let V = Z2 = { 0, 1 }. Infinitely many an are such that an /∈ V. In particular,
for all odd integers n ∈ N, an /∈ V. Does an converge to 2? Any open set the
contains 2 also contains 1, so given any U ∈ τ with 2 ∈ U , choose N = 0. For
all n > N we have an ∈ U . So an → 2. Also, an → 3 and an → 4. Moreover,
for every integer k > 1, an → k is a true statement. �

Example 2.4 Let X be a set and τ = P(X) be the discrete topology. Let
a : N → X be a sequence. Then given x ∈ X, an → x if and only if there
is an N ∈ N such that for all n > N we have an = x. To see this, choose
U = {x }. This set is open since it is a subset of X and τ is the discrete
topology. Applying the definition of convergence to this set shows that an is
eventually a constant. �

Example 2.5 Let X = R and τC be the countable complement topology. If
a : N→ R converges, then an is eventually a constant. We can show that if an
converges to x, then eventually an = x for at least one n ∈ N. Define A ⊆ R
via:

A = { an ∈ R | n ∈ N } (15)

This is a countable subset, so R \A is open in the countable complement topol-
ogy. If an 6= x for all n ∈ N, then x ∈ R\A. But this is an open set that contains
x and never contains any of the an, meaning an can’t possible converge to x.
So if an → x, then an = x for at least one integer n ∈ N. Now, we can show
an = x for all sufficiently large n. Define B by:

B = { an ∈ R | n ∈ N and an 6= x } (16)
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This set is also countable, so R \ B is open. Applying the definition of conver-
gence shows that an = x for all large n ∈ N. Contrast this with convergence
in the standard topology on R. The sequence an = 1

n+1 converges to zero but
is never equal to zero. The countable complement topology does not have such
sequences. �

Uniqueness of limits is given by the Hausdorff property. All of the bizarre
examples we’ve discussed so far involved non-Hausdorff spaces.

Theorem 2.1. If (X, τ) is a Hausdorff topological space, if a : N → X is a
convergent sequence, and if x, y ∈ X are such that an → x and an → y, then
x = y.

Proof. Suppose not. Since x 6= y and (X, τ) is Hausdorff, there are open sets
U ,V ∈ τ such that x ∈ U , y ∈ V, and U ∩ V = ∅. But an → x, so there is an
N0 ∈ N such that for all n ∈ N with n > N0 it is true that an ∈ U . But also
an → y so there is an N1 ∈ N such that n ∈ N and n > N1 implies an ∈ V. Let
N = max(N0, N1). Then for all n ∈ N with n > N we have an ∈ U and an ∈ V.
But U ∩ V = ∅, which is a contradiction. Hence, x = y.

Example 2.6 The converse of this theorem is not true. It is possible for se-
quences to be unique, but the space to not be Hausdorff. The countable com-
plement topology on R is an example. �

Sequences were sufficient to describe open sets in metric spaces. We used the
metric, but then proved that a set U in a metric space (X, d) is open if and
only if for every sequence a : N → X that converges to some x ∈ U , there is
an N ∈ N such that n > N implies an ∈ U . We take this and use it to define
sequentially open subsets.

Definition 2.2 (Sequentially Open Subset) A sequentially open subset in a
topological space (X, τ) is a set U ⊆ X such that for every sequence a : N→ X
that converges to a point x ∈ U there exists an N ∈ N such that for all n ∈ N
with n > N it is true that an ∈ U . �

This is insufficient for topological spaces. We need to use the topology to define
openness, not just sequences. The countable complement topology on R gives us
an example. Every subset of R is sequentially open in the countable complement
topology since a : N → R converges if and only if it is eventually constant.
However, not every subset of R is open with the countable complement topology.

Open always implies sequentially open, almost by definition.

Theorem 2.2. If (X, τ) is a topological space, and if U ∈ τ , then U is sequen-
tially open.

Proof. For let a : N → X be a sequence that converges to x ∈ U . Then, since
U is open, by the definition of convergence there is an N ∈ N such that n ∈ N
and n > N implies an ∈ U . Hence, U is sequentially open.
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Definition 2.3 (Sequential Topological Space) A sequential topological
space is a topological space (X, τ) such that for all U ⊆ X, U is open if and
only if U is sequentially open. �

Sequential spaces are spaces where sequences are enough. Enough for just about
everything. These are spaces where sequences can describe open sets, closed sets,
and continuity. It is fortunate that most spaces one encounters are sequential.

3 Continuity

Sequences are not sufficient to describe continuity, since they are not sufficient
to describe open sets. In the theory of metric spaces we proved that a function
is continuous if and only if the pre-image of an open set is open. This only
requires the topology, meaning it is perfect to describe continuity in the general
topological setting.

Definition 3.1 (Continuous Function Between Topological Spaces) A
continuous function from a topological space (X, τX) to a topological space
(Y, τY ) is a function f : X → Y such that for all V ∈ τY it is true that
f−1[V] ∈ τX . That is, the pre-image of an open set is open. �

Example 3.1 If Y is a set, τY = { ∅, Y } is the indiscrete topology, and if
(X, τX) is any topological space, then any function f : X → Y is continuous.
We need to check for every open set V ∈ τY that the pre-image f−1[V] is open.
There are only two candidates to check. We have f−1[∅] = ∅ and f−1[Y ] = X,
both of which are open sets in τX . Hence, f is continuous. �

Example 3.2 If X is a set, τX = P(X) is the discrete topology, and if (Y, τY )
is any topological space, then for any function f : X → Y it is true that f
is continuous. Given any open subset V ∈ τY , the pre-image is a subset of
X, so f−1[V] ∈ P(X). That is, f−1[V] ∈ τX , so f−1[V] is open, and f is
continuous. �

Theorem 3.1. If (X, τX) and (Y, τY ) are topological spaces, then f : X → Y
is continuous if and only if for every closed subset D ⊆ Y , the pre-image f−1[D]
is closed in X.

Proof. Suppose f is continuous, and let D be closed. Then:

f−1[Y \ D] = f−1[Y ] \ f−1[D] = X \ f−1[D] (17)

But Y \ D is open since D is closed, so X \ f−1[D] is open. But then f−1[D] is
closed. Now, suppose the pre-image of closed sets are closed. Given V ∈ τY , we
have:

f−1[V] = f−1[Y \ (Y \ V)] = f−1[Y ] \ f−1[Y \ V] = X \ f−1[Y \ V] (18)

But V is open, so Y \ V is closed. By assumption f−1[Y \ V] is closed, so
X \ f−1[Y \ V] is the complement of a closed set, and hence is open. That is,
the pre-image of an open set is open, so f is continuous.
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As mentioned, sequences are not enough to describe continuity. We give a new
definition to functions that map convergent sequences to convergent sequences.

Definition 3.2 (Sequentially Continuous Function) A sequentially contin-
uous function from a topological space (X, τX) to a topological space (Y, τY ) is
a function such that for every convergent sequence a : N→ X with x ∈ X such
that an → x, it is true that f(an)→ f(x). �

There’s no requirement that limits be unique in either (X, τX) nor (Y, τY ). The
definition does not need such a notion. Continuity always implies sequential
continuity.

Theorem 3.2. If (X, τX) and (Y, τY ) are topological spaces, and if f : X → Y
is a continuous function, then f is sequentially continuous.

Proof. Suppose not. Then there is a sequence a : N → X and an x ∈ X such
that an → x but f(an) 6→ f(x). But if f(an) 6→ f(x), then by the definition of
convergence, there is an open set V ∈ τY with f(x) ∈ V such that for all N ∈ N
there is an n ∈ N with n > N but f(an) /∈ V. But V is open, and f is continuous,
so f−1[V] is open. But since f(x) ∈ V it is true that x ∈ f−1[V] by the definition
of pre-image. But since f−1[V] is open, x ∈ f−1[V], and an → x, there is an
N ∈ N such that for all n ∈ N with n > N it is true that an ∈ f−1[V]. But
then f(an) ∈ V for all n > N , which is a contradiction. Hence, f is sequentially
continuous.

Example 3.3 The converse does not reverse, in general. Let X = Y = R, let
τX = τC , the countable complement topology, and let τY = τR be the standard
topology. Define f : R → R by f(x) = x. Then f is not continuous, but it
is sequentially continuous. It is not continuous since (0, 1) is open in τR, but
f−1[(0, 1)] = (0, 1), and (0, 1) is not open in τC . f is sequentially continuous.
If a : N → R converges to x ∈ R with respect to τC , then there is an N ∈ N
such that for all n ∈ N with n > N we have an = x. But then f(an) = x for all
n > N , and therefore f(an)→ f(x). �

Theorem 3.3. If (X, τX) is a sequential topological space, if (Y, τY ) is a topo-
logical space, and if f : X → Y is a function, then f is continuous if and only
if f is sequentially continuous.

Proof. Continuity implies sequential continuity in every setting. Let’s go the
other way. Suppose f : X → Y is sequentially continuous. Suppose f is not
continuous. Then there is a V ∈ τY such that f−1[V] /∈ τX . That is, there is
an open set in Y whose pre-image is not open in X. But (X, τX) is sequential,
so if f−1[V] is not open, then it is not sequentially open. But if f−1[V] is not
sequentially open, then there is a sequence a : N → X and an x ∈ f−1[V]
such that an → x, but for all N ∈ N there is an n ∈ N with n > N such that
an /∈ f−1[V]. But f is sequentially continuous, so if an → x, then f(an)→ f(x).
But then V is an open set containing f(x) and f(an) → f(x), so there is an
N ∈ N such that for all n ∈ N with n > N it is true that f(an) ∈ V. But then
for all n > N it is true that an ∈ f−1[V], which is a contradiction. Hence, f is
continuous.
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