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1 First Countable

So far we’ve seen that sequential spaces are the nice ones (and Hausdorff spaces.
Sequential and Hausdorff is just the bee’s knees). We also have no tools for
determining if a space is sequential or not. One of the most mild conditions
one can impose on a topological space is that it be first-countable. Most of
the topological spaces studied are first-countable, with some crucial exceptions
(the Zariski topology on R is not first-countable). We now proceed to describe
this notion, give examples, prove some theorems, and show how first-countable
spaces relate to sequential spaces.

Definition 1.1 (Neighborhood Basis) A neighborhood basis in a topological
space (X, τ) of a point x ∈ X is a subset B ⊆ τ such that for all U ∈ B it is true
that x ∈ U , and for all V ∈ τ such that x ∈ V, there is a U ∈ B with U ⊆ V. �

First-countable spaces are defined in terms of neighborhood bases.

Definition 1.2 (First-Countable Topological Space) A first-countable topo-
logical space is a topological space (X, τ) such that for all x ∈ X there exists a
countable subset B ⊆ τ such that B is a neighborhood basis for x. �

Example 1.1 The real line with the standard topology is first-countable. Given
x ∈ R, define Un = (x − 1

n+1 , x + 1
n+1 ). The set B = {Un | n ∈ N } forms a

neighborhood basis for x. Given any open V ⊆ R with x ∈ V, there is an ε > 0
such that for all y ∈ R with |x − y| < ε, it is true that y ∈ V. Choosing n so
that 1

n+1 < ε shows that Un ⊆ V. �

Example 1.2 All Euclidean spaces are first-countable as well. We can apply a
similar trick in Rn by surrounding x ∈ Rn with countably many open balls of
radius 1

n+1 . �

The ideas behind these two examples only require the existence of open sets
that get smaller, in a sense. Metric spaces have such a notion, open balls.

Theorem 1.1. If (X, τ) is a metrizable topological space, then it is first-
countable.
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Proof. Since (X, τ) is metrizable, there is a metric d on X such that τ = τd,
where τd is the metric topology. Let x ∈ X and define:

B = {B(X, d)
1

n+1

(x) | n ∈ N } (1)

B is a countable neighborhood basis of x. First, since 1
n+1 > 0 for all n ∈ N,

these open balls are non-empty and all contain the point x. Next, the set is
countable since the elements are indexed by the natural numbers. Lastly, given
any U ∈ τd with x ∈ U , by the definition of the metric topology there is an
ε > 0 such that:

B(X, d)
ε (x) ⊆ U (2)

Choose n ∈ N such that 1
n+1 < ε. Then:

B
(X, d)

1
n+1

(x) ⊆ B(X, d)
ε (x) ⊆ U (3)

hence B is a countable neighborhood basis of x, so (X, τ) is first-countable.

First-countable always implies sequential. It is often easier to prove a partic-
ular space is first-countable rather than prove it is sequential, so the following
theorem has many uses in topology.

Theorem 1.2. If (X, τ) is a first-countable topological space, then it is sequen-
tial.

Proof. Suppose not. Then there is U ⊆ X that is sequentially open but not
open. Since U is not open, there is an x ∈ U such that for all V ∈ τ with x ∈ V,
it is not true that V ⊆ U (otherwise we could write U as the union of all such
Vx, which is the union of open sets, and hence open, but U is not open). Since
(X, τ) is first countable, there is a countable neighborhood basis B of x. Since
B is countable, there is a surjection V : N→ B. That is, we can list the elements
of B as:

B = { V0, . . . , Vn, . . . } (4)

Define Wn via:

Wn =

n⋂
k=0

Vk (5)

For all n ∈ N, Wn is open since it is the finite intersection of open sets. But
x ∈ Wn, meaning there is an an ∈ Wn such that an /∈ U (again, since U is not
open and x ∈ U was chosen so that there are no open subsets of X that contain
x and fit inside U). We must show an → x. Let E ∈ τ be an open set with
x ∈ E . Since B is a neighborhood basis, there is an N ∈ N such that VN ⊆ E .
But then for all n > N , by the definition of Wn, we have that Wn ⊆ VN and
hence Wn ⊆ E . But then for all n > N we have an ∈ E . Hence, an → x.
But U is sequentially open and x ∈ U , so if an → x, then there is an N ∈ N
such that for all n ∈ N with n > N we have an ∈ U . But by definition of the
sequence, for all n ∈ N, an /∈ U , a contradiction. Hence, U is open and (X, τ)
is sequential.

2



2 Second Countable

Second-countable is a much stronger notion than first-countable. All of the
spaces the human brain can hope to visualize are second-countable. Spaces we
can envision are subsets of Rn for some n ∈ N (in fact, probably just 0, 1,
2, 3, and maybe 4 if you’re really good). In other words, metric subspaces of
Euclidean spaces. Any metric subspace of Rn is second-countable, so if you are
to try and picture a topological space (without lying to yourself), the space
better be second-countable. With that, I give a definition.

Definition 2.1 (Second-Countable Topological Space) A second-countab-
le topological space is a topological space (X, τ) such that there exists a count-
able basis B for the topology τ . �

Second-countable spaces are not too big.

Example 2.1 The real line, with the standard topology, is second-countable.
Let B be the set of all intervals (a, b) with a, b ∈ Q and a < b. This set has the
cardinality of Q × Q, which is countable. It is also a basis, essentially because
the rationals are dense in R. So B is a countable basis for the real line, meaning
R is second-countable. �

Example 2.2 All Euclidean spaces are second-countable. We can apply a
similar trick, take all points x ∈ Rn where every coordinate in x is rational.
That is, if x = (x0, . . . , xn−1), require that xk ∈ Q for all k ∈ Zn. About each
point collect all open balls with rational radii. This set has cardinality Qn+1,
which again is countable (essentially by induction). This also forms a basis,
showing that Rn is second-countable. �

Example 2.3 Not every metrizable space is second-countable. Equip R with
the discrete topology P(R). Since all of the singletons {x } are open, any basis
B must include a copy of {x } for each x ∈ R, meaning B cannot be countable
since R is uncountable. The space is metrizable, however, since it comes from
the discrete metric. �

Theorem 2.1. If (X, τ) is second-countable, then it is first-countable.

Proof. Since (X, τ) is second-countable, there is a countable basis B. Given
x ∈ X, define Bx via:

Bx = {U ∈ B | x ∈ U } (6)

Since Bx is a subset of a countable set, it is countable. It is also a neighborhood
basis of x. By definition every element of Bx contains x. Suppose V ∈ τ is an
open set such that x ∈ V. Since B is a basis, there is a U ∈ B such that x ∈ U
and U ⊆ V. But since x ∈ U it is true that U ∈ Bx. But then U is an element
of Bx such that U ⊆ V. Hence, (X, τ) is first-countable.

The converse does not hold. We’ve shown that all metrizable spaces are first-
countable, but the discrete topology on R is a metrizable space that is not
second-countable. That is,

(
R, P(R)

)
is a first-countable space that is not

second-countable.
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3 Separable

Separable spaces are important in analysis and geometry. The real line has the
property that there is a countable subset Q that can approximate every point
on the line. We take this idea to motivate the term separable.

Definition 3.1 (Separable Topological Space) A separable topological space
is a topological space (X, τ) such that there exists a countable dense subset
A ⊆ X. That is, A is countable and Clτ (A) = X. �

Example 3.1 The real line is separable, taking A = Q gives us a countable
dense subset. Rn is also separable, setting A = Qn shows there is a countable
dense subset of Rn. �

The two previous examples of separable spaces are also second-countable. This
is not a coincidence, every second-countable space is separable.

Theorem 3.1. If (X, τ) is second-countable, then it is separable.

Proof. Since (X, τ) is second-countable, there exists a countable basis B′ for τ .
Let B ⊆ B′ be the set of all non-empty elements of B′. Since B′ is a countable
basis, so is B (we’re only removing the empty set). B now has the property
that for all V ∈ B, V is non-empty. Since B is countable, there is a surjection
U : N→ B. That is, we may list the elements as:

B = {U0, . . . , Un, . . . } (7)

Since Un is non-empty for all n ∈ N, by the axiom of countable choice we can
find a sequence a : N→ X such that an ∈ Un for all n ∈ N. Define A by:

A = { an ∈ X | n ∈ N } (8)

A is countable since it is index by the natural numbers. It is also dense. For
suppose not. A set B is dense if and only if for every non-empty open subset
V ∈ τ the intersection B ∩ V is non-empty. Since we are supposing A is not
dense, there must be a non-empty open subset V such that A∩V is empty. But
since V is open and B is a basis, there is a Un ∈ B such that Un ⊆ V. But
an ∈ Un, so an ∈ V. But an ∈ A, which is a contradiction since A ∩ V = ∅.
Hence, A is dense.

Example 3.2 (The Particular Point Topology) This theorem does not re-
verse. There are topological spaces that are separable but not second-countable.
The easiest example to describe is the particular point topology on R. Define
U ⊆ R to be open in τ if and only if U = ∅ or 0 ∈ U . This space is separable
since A = { 0 } is a dense subset and it is certainly countable since it is finite. A
is dense since the only closed set containing { 0 } is R. Given any closed set C,
R \ C is open, meaning either R \ C is empty, or 0 ∈ R \ C. So if C is a closed set
with 0 ∈ C, it must be true that R \ C = ∅. Hence, the only closed set contain
0 is R. So, Clτ

(
{ 0 }

)
= R. This space is not second-countable. Every set of
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the form { 0, x } for all x ∈ R is open, so a basis must contain a copy of each of
these. The cardinality of such a basis must then be at least as big as R, which
is uncountable, meaning (R, τ) is not second-countable. �

Theorem 3.2. If (X, τ) is metrizable and separable, then it is second-countable.

Proof. Since (X, τ) is metrizable, there is a metric d on X such that τ = τd,
where τd is the metric topology from d. Since (X, τ) is separable, there is a
countable dense subset A ⊆ X. Define B via:

B = {B(X, d)
r (x) | x ∈ A and q ∈ Q+ } (9)

That is, B is the set of all balls of rational radii centered at all points in A.
Since A and Q are countable, the set B is countable as well. B is a basis. It
covers X, for given y ∈ X, pick any x ∈ A and r ∈ Q+ such that r > d(x, y).

Then y ∈ B(X, d)
r (x), which is an element of B, so B is an open cover of (X, τ).

Suppose U ,V ∈ τ and x ∈ U ∩ V. Since U ∩ V is open and x ∈ U ∩ V there is

an r > 0 such that B
(X, d)
r (x) ⊆ U ∩ V. But since r > 0, r/4 > 0 as well, so

B
(X, d)
r/4 (x) is open. But A is dense, so there is a y ∈ A such that y ∈ B(X, d)

r/4 (x).

Choose ε ∈ Q+ such that r/4 < ε < r/2. Then B
(X, d)
ε (y) ⊆ B

(X, d)
r (x), so

B
(X, d)
ε (y) ⊆ U ∩ V but also x ∈ B

(X, d)
ε (y). That is, we’ve found an element

of B that contains x and fits inside of U ∩ V. Hence, B is a countable basis.
Therefore, (X, τ) is second countable.

The trick seems to hint that a separable first-countable space should be second-
countable, but this is false. The metric topology was very helpful in this proof
in some subtle ways.

Example 3.3 The particular point topology on R is separable (as we’ve already
seen) and first-countable, but not second-countable (again, we saw this in a
previous example). To show that it is first-countable, pick any x ∈ R. The
set B =

{
{ 0, x }

}
is a neighborhood basis of x. Given any open U ⊆ R

that contains x, it must also contain 0 by the definition of the particular point
topology. Hence { 0, x } ⊆ U . But also { 0, x } is open. This shows B is a
neighborhood basis of x, and it is finite, hence countable. �
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