Point-Set Topology: Lecture 13

Ryan Maguire

Summer 2022

1 First Countable

So far we've seen that sequential spaces are the nice ones (and Hausdorff spaces. Sequential *and* Hausdorff is just the bee's knees). We also have no tools for determining if a space is sequential or not. One of the most mild conditions one can impose on a topological space is that it be *first-countable*. Most of the topological spaces studied are first-countable, with some crucial exceptions (the Zariski topology on \mathbb{R} is not first-countable). We now proceed to describe this notion, give examples, prove some theorems, and show how first-countable spaces relate to sequential spaces.

Definition 1.1 (Neighborhood Basis) A neighborhood basis in a topological space (X, τ) of a point $x \in X$ is a subset $\mathcal{B} \subseteq \tau$ such that for all $\mathcal{U} \in \mathcal{B}$ it is true that $x \in \mathcal{U}$, and for all $\mathcal{V} \in \tau$ such that $x \in \mathcal{V}$, there is a $\mathcal{U} \in \mathcal{B}$ with $\mathcal{U} \subseteq \mathcal{V}$.

First-countable spaces are defined in terms of neighborhood bases.

Definition 1.2 (First-Countable Topological Space) A first-countable topological space is a topological space (X, τ) such that for all $x \in X$ there exists a countable subset $\mathcal{B} \subseteq \tau$ such that \mathcal{B} is a neighborhood basis for x.

Example 1.1 The real line with the standard topology is first-countable. Given $x \in \mathbb{R}$, define $\mathcal{U}_n = (x - \frac{1}{n+1}, x + \frac{1}{n+1})$. The set $\mathcal{B} = \{\mathcal{U}_n \mid n \in \mathbb{N}\}$ forms a neighborhood basis for x. Given any open $\mathcal{V} \subseteq \mathbb{R}$ with $x \in \mathcal{V}$, there is an $\varepsilon > 0$ such that for all $y \in \mathbb{R}$ with $|x - y| < \varepsilon$, it is true that $y \in \mathcal{V}$. Choosing n so that $\frac{1}{n+1} < \varepsilon$ shows that $\mathcal{U}_n \subseteq \mathcal{V}$.

Example 1.2 All Euclidean spaces are first-countable as well. We can apply a similar trick in \mathbb{R}^n by surrounding $\mathbf{x} \in \mathbb{R}^n$ with countably many open balls of radius $\frac{1}{n+1}$.

The ideas behind these two examples only require the existence of open sets that get *smaller*, in a sense. Metric spaces have such a notion, *open balls*.

Theorem 1.1. If (X, τ) is a metrizable topological space, then it is firstcountable. *Proof.* Since (X, τ) is metrizable, there is a metric d on X such that $\tau = \tau_d$, where τ_d is the metric topology. Let $x \in X$ and define:

$$\mathcal{B} = \{ B_{\frac{1}{n+1}}^{(X,d)}(x) \mid n \in \mathbb{N} \}$$
(1)

 \mathcal{B} is a countable neighborhood basis of x. First, since $\frac{1}{n+1} > 0$ for all $n \in \mathbb{N}$, these open balls are non-empty and all contain the point x. Next, the set is countable since the elements are indexed by the natural numbers. Lastly, given any $\mathcal{U} \in \tau_d$ with $x \in \mathcal{U}$, by the definition of the metric topology there is an $\varepsilon > 0$ such that:

$$B_{\varepsilon}^{(X,d)}(x) \subseteq \mathcal{U} \tag{2}$$

Choose $n \in \mathbb{N}$ such that $\frac{1}{n+1} < \varepsilon$. Then:

$$B_{\varepsilon}^{(X,d)}(x) \subseteq B_{\varepsilon}^{(X,d)}(x) \subseteq \mathcal{U}$$
(3)

hence \mathcal{B} is a countable neighborhood basis of x, so (X, τ) is first-countable. \Box

First-countable always implies sequential. It is often easier to prove a particular space is first-countable rather than prove it is sequential, so the following theorem has many uses in topology.

Theorem 1.2. If (X, τ) is a first-countable topological space, then it is sequential.

Proof. Suppose not. Then there is $\mathcal{U} \subseteq X$ that is sequentially open but not open. Since \mathcal{U} is not open, there is an $x \in \mathcal{U}$ such that for all $\mathcal{V} \in \tau$ with $x \in \mathcal{V}$, it is not true that $\mathcal{V} \subseteq \mathcal{U}$ (otherwise we could write \mathcal{U} as the union of all such \mathcal{V}_x , which is the union of open sets, and hence open, but \mathcal{U} is not open). Since (X, τ) is first countable, there is a countable neighborhood basis \mathcal{B} of x. Since \mathcal{B} is countable, there is a surjection $\mathcal{V} : \mathbb{N} \to \mathcal{B}$. That is, we can list the elements of \mathcal{B} as:

$$\mathcal{B} = \{ \mathcal{V}_0, \dots, \mathcal{V}_n, \dots \}$$
(4)

Define \mathcal{W}_n via:

$$\mathcal{W}_n = \bigcap_{k=0}^n \mathcal{V}_k \tag{5}$$

For all $n \in \mathbb{N}$, \mathcal{W}_n is open since it is the finite intersection of open sets. But $x \in \mathcal{W}_n$, meaning there is an $a_n \in \mathcal{W}_n$ such that $a_n \notin \mathcal{U}$ (again, since \mathcal{U} is not open and $x \in \mathcal{U}$ was chosen so that there are no open subsets of X that contain x and fit inside \mathcal{U}). We must show $a_n \to x$. Let $\mathcal{E} \in \tau$ be an open set with $x \in \mathcal{E}$. Since \mathcal{B} is a neighborhood basis, there is an $N \in \mathbb{N}$ such that $\mathcal{V}_N \subseteq \mathcal{E}$. But then for all n > N, by the definition of \mathcal{W}_n , we have that $\mathcal{W}_n \subseteq \mathcal{V}_N$ and hence $\mathcal{W}_n \subseteq \mathcal{E}$. But then for all n > N we have $a_n \in \mathcal{E}$. Hence, $a_n \to x$. But \mathcal{U} is sequentially open and $x \in \mathcal{U}$, so if $a_n \to x$, then there is an $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with n > N we have $a_n \in \mathcal{U}$. But by definition of the sequence, for all $n \in \mathbb{N}$, $a_n \notin \mathcal{U}$, a contradiction. Hence, \mathcal{U} is open and (X, τ) is sequential.

2 Second Countable

Second-countable is a much stronger notion than first-countable. All of the spaces the human brain can hope to visualize are second-countable. Spaces we can envision are subsets of \mathbb{R}^n for some $n \in \mathbb{N}$ (in fact, probably just 0, 1, 2, 3, and *maybe* 4 if you're really good). In other words, metric subspaces of Euclidean spaces. Any metric subspace of \mathbb{R}^n is second-countable, so if you are to try and picture a topological space (without lying to yourself), the space better be second-countable. With that, I give a definition.

Definition 2.1 (Second-Countable Topological Space) A second-countable topological space is a topological space (X, τ) such that there exists a countable basis \mathcal{B} for the topology τ .

Second-countable spaces are not too big.

Example 2.1 The real line, with the standard topology, is second-countable. Let \mathcal{B} be the set of all intervals (a, b) with $a, b \in \mathbb{Q}$ and a < b. This set has the cardinality of $\mathbb{Q} \times \mathbb{Q}$, which is countable. It is also a basis, essentially because the rationals are dense in \mathbb{R} . So \mathcal{B} is a countable basis for the real line, meaning \mathbb{R} is second-countable.

Example 2.2 All Euclidean spaces are second-countable. We can apply a similar trick, take all points $\mathbf{x} \in \mathbb{R}^n$ where every coordinate in \mathbf{x} is rational. That is, if $\mathbf{x} = (x_0, \ldots, x_{n-1})$, require that $x_k \in \mathbb{Q}$ for all $k \in \mathbb{Z}_n$. About each point collect all open balls with rational radii. This set has cardinality \mathbb{Q}^{n+1} , which again is countable (essentially by induction). This also forms a basis, showing that \mathbb{R}^n is second-countable.

Example 2.3 Not every metrizable space is second-countable. Equip \mathbb{R} with the discrete topology $\mathcal{P}(\mathbb{R})$. Since all of the singletons $\{x\}$ are open, any basis \mathcal{B} must include a copy of $\{x\}$ for each $x \in \mathbb{R}$, meaning \mathcal{B} cannot be countable since \mathbb{R} is uncountable. The space is metrizable, however, since it comes from the discrete metric.

Theorem 2.1. If (X, τ) is second-countable, then it is first-countable.

Proof. Since (X, τ) is second-countable, there is a countable basis \mathcal{B} . Given $x \in X$, define \mathcal{B}_x via:

$$\mathcal{B}_x = \{ \mathcal{U} \in \mathcal{B} \mid x \in \mathcal{U} \}$$
(6)

Since \mathcal{B}_x is a subset of a countable set, it is countable. It is also a neighborhood basis of x. By definition every element of \mathcal{B}_x contains x. Suppose $\mathcal{V} \in \tau$ is an open set such that $x \in \mathcal{V}$. Since \mathcal{B} is a basis, there is a $\mathcal{U} \in \mathcal{B}$ such that $x \in \mathcal{U}$ and $\mathcal{U} \subseteq \mathcal{V}$. But since $x \in \mathcal{U}$ it is true that $\mathcal{U} \in \mathcal{B}_x$. But then \mathcal{U} is an element of \mathcal{B}_x such that $\mathcal{U} \subseteq \mathcal{V}$. Hence, (X, τ) is first-countable.

The converse does not hold. We've shown that all metrizable spaces are firstcountable, but the discrete topology on \mathbb{R} is a metrizable space that is not second-countable. That is, $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$ is a first-countable space that is not second-countable.

3 Separable

Separable spaces are important in analysis and geometry. The real line has the property that there is a countable subset \mathbb{Q} that can approximate every point on the line. We take this idea to motivate the term separable.

Definition 3.1 (Separable Topological Space) A separable topological space is a topological space (X, τ) such that there exists a countable dense subset $A \subseteq X$. That is, A is countable and $\operatorname{Cl}_{\tau}(A) = X$.

Example 3.1 The real line is separable, taking $A = \mathbb{Q}$ gives us a countable dense subset. \mathbb{R}^n is also separable, setting $A = \mathbb{Q}^n$ shows there is a countable dense subset of \mathbb{R}^n .

The two previous examples of separable spaces are also second-countable. This is not a coincidence, every second-countable space is separable.

Theorem 3.1. If (X, τ) is second-countable, then it is separable.

Proof. Since (X, τ) is second-countable, there exists a countable basis \mathcal{B}' for τ . Let $\mathcal{B} \subseteq \mathcal{B}'$ be the set of all non-empty elements of \mathcal{B}' . Since \mathcal{B}' is a countable basis, so is \mathcal{B} (we're only removing the empty set). \mathcal{B} now has the property that for all $\mathcal{V} \in \mathcal{B}, \mathcal{V}$ is non-empty. Since \mathcal{B} is countable, there is a surjection $\mathcal{U} : \mathbb{N} \to \mathcal{B}$. That is, we may list the elements as:

$$\mathcal{B} = \{\mathcal{U}_0, \dots, \mathcal{U}_n, \dots\}$$
(7)

Since \mathcal{U}_n is non-empty for all $n \in \mathbb{N}$, by the axiom of countable choice we can find a sequence $a : \mathbb{N} \to X$ such that $a_n \in \mathcal{U}_n$ for all $n \in \mathbb{N}$. Define A by:

$$A = \{ a_n \in X \mid n \in \mathbb{N} \}$$

$$\tag{8}$$

A is countable since it is index by the natural numbers. It is also dense. For suppose not. A set B is dense if and only if for every non-empty open subset $\mathcal{V} \in \tau$ the intersection $B \cap \mathcal{V}$ is non-empty. Since we are supposing A is not dense, there must be a non-empty open subset \mathcal{V} such that $A \cap \mathcal{V}$ is empty. But since \mathcal{V} is open and \mathcal{B} is a basis, there is a $\mathcal{U}_n \in \mathcal{B}$ such that $\mathcal{U}_n \subseteq \mathcal{V}$. But $a_n \in \mathcal{U}_n$, so $a_n \in \mathcal{V}$. But $a_n \in A$, which is a contradiction since $A \cap \mathcal{V} = \emptyset$. Hence, A is dense.

Example 3.2 (The Particular Point Topology) This theorem does not reverse. There are topological spaces that are separable but not second-countable. The easiest example to describe is the *particular point topology* on \mathbb{R} . Define $\mathcal{U} \subseteq \mathbb{R}$ to be open in τ if and only if $\mathcal{U} = \emptyset$ or $0 \in \mathcal{U}$. This space is separable since $A = \{0\}$ is a dense subset and it is certainly countable since it is finite. A is dense since the only closed set containing $\{0\}$ is \mathbb{R} . Given any closed set \mathcal{C} , $\mathbb{R} \setminus \mathcal{C}$ is open, meaning either $\mathbb{R} \setminus \mathcal{C}$ is empty, or $0 \in \mathbb{R} \setminus \mathcal{C}$. So if \mathcal{C} is a closed set with $0 \in \mathcal{C}$, it must be true that $\mathbb{R} \setminus \mathcal{C} = \emptyset$. Hence, the only closed set contain 0 is \mathbb{R} . So, $\operatorname{Cl}_{\tau}(\{0\}) = \mathbb{R}$. This space is not second-countable. Every set of

the form $\{0, x\}$ for all $x \in \mathbb{R}$ is open, so a basis must contain a copy of each of these. The cardinality of such a basis must then be at least as big as \mathbb{R} , which is uncountable, meaning (\mathbb{R}, τ) is not second-countable.

Theorem 3.2. If (X, τ) is metrizable and separable, then it is second-countable.

Proof. Since (X, τ) is metrizable, there is a metric d on X such that $\tau = \tau_d$, where τ_d is the metric topology from d. Since (X, τ) is separable, there is a countable dense subset $A \subseteq X$. Define \mathcal{B} via:

$$\mathcal{B} = \{ B_r^{(X,d)}(x) \mid x \in A \text{ and } q \in \mathbb{Q}^+ \}$$
(9)

That is, \mathcal{B} is the set of all balls of rational radii centered at all points in A. Since A and \mathbb{Q} are countable, the set \mathcal{B} is countable as well. \mathcal{B} is a basis. It covers X, for given $y \in X$, pick any $x \in A$ and $r \in \mathbb{Q}^+$ such that r > d(x, y). Then $y \in B_r^{(X,d)}(x)$, which is an element of \mathcal{B} , so \mathcal{B} is an open cover of (X, τ) . Suppose $\mathcal{U}, \mathcal{V} \in \tau$ and $x \in \mathcal{U} \cap \mathcal{V}$. Since $\mathcal{U} \cap \mathcal{V}$ is open and $x \in \mathcal{U} \cap \mathcal{V}$ there is an r > 0 such that $B_r^{(X,d)}(x) \subseteq \mathcal{U} \cap \mathcal{V}$. But since r > 0, r/4 > 0 as well, so $B_{r/4}^{(X,d)}(x)$ is open. But A is dense, so there is a $y \in A$ such that $y \in B_{r/4}^{(X,d)}(x)$. Choose $\varepsilon \in \mathbb{Q}^+$ such that $r/4 < \varepsilon < r/2$. Then $B_{\varepsilon}^{(X,d)}(y) \subseteq B_r^{(X,d)}(x)$, so $B_{\varepsilon}^{(X,d)}(y) \subseteq \mathcal{U} \cap \mathcal{V}$ but also $x \in B_{\varepsilon}^{(X,d)}(y)$. That is, we've found an element of \mathcal{B} that contains x and fits inside of $\mathcal{U} \cap \mathcal{V}$. Hence, \mathcal{B} is a countable basis. Therefore, (X, τ) is second countable.

The trick *seems* to hint that a separable first-countable space should be secondcountable, but this is **false**. The metric topology was very helpful in this proof in some subtle ways.

Example 3.3 The particular point topology on \mathbb{R} is separable (as we've already seen) and first-countable, but not second-countable (again, we saw this in a previous example). To show that it is first-countable, pick any $x \in \mathbb{R}$. The set $\mathcal{B} = \{\{0, x\}\}$ is a neighborhood basis of x. Given any open $\mathcal{U} \subseteq \mathbb{R}$ that contains x, it must also contain 0 by the definition of the particular point topology. Hence $\{0, x\} \subseteq \mathcal{U}$. But also $\{0, x\}$ is open. This shows \mathcal{B} is a neighborhood basis of x, and it is finite, hence countable.