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1 Homeomorphisms and Open Mappings

Thus far we’ve discussed conditions for when continuity can be described by
sequences. It is worthwhile studying the general notion of continuity as well.
As a reminder, given two topological spaces (X, τX) and (Y, τY ), a continuous
function from X to Y is a function f : X → Y such that for all V ∈ τY it is
true that f−1[V] ∈ τX . That is, the pre-image of an open set is open. It was
proved this is equivalent to the pre-image of a closed set being closed using some
of the set-theoretic laws of pre-image and set difference. Homeomorphism is a
stronger notion. It tells us when two topological spaces are the same.

Definition 1.1 (Homeomorphism) A homeomorphism from a topological
space (X, τX) to a topological space (Y, τY ) is a bijective continuous function
f : X → Y such that f−1 is continuous. �

Example 1.1 Let (X, τ) be any topological space, and f : X → X be the
identity function f(x) = x. Then f is a homeomorphism. It is certainly a
bijection, but it is also continuous. Given U ∈ τ we have f−1[U ] = U , which is

an element of τ . Given V ∈ τ we have
(
f−1

)−1
[V] = f [V] = V, which is in τ

(Note:
(
f−1

)−1
[V] = f [V] = V is true since f is a bijection). This shows f is a

homeomorphism. �

Example 1.2 Take X = Y = R and give both of these the standard Euclidean
topology τR. The function f : R→ R defined by f(x) = x3 is a homeomorphism.
It is bijective, continuous, and the inverse is given by f−1(x) = 3

√
x = x1/3,

which is also continuous. �

Example 1.3 Any continuous bijective function f : R → R is a homeomor-
phism with respect to the standard topology. This is not true for general
topological spaces. It is not true that a continuous bijection must have
a continuous inverse. The real line is special in this regard. This property
comes from the fact that the real line has a complete total ordered (via the <
symbol). If f : R → R is a continuous bijection, it must be strictly increas-
ing or strictly decreasing. If not, if there are a < b < c with f(a) < f(b) and
f(c) < f(b), or f(b) < f(a) and f(b) < f(c), then by the intermediate value the-
orem there must be values x0 ∈ (a, b) and x1 ∈ (b, c) such that f(x0) = f(x1),
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violating the fact that f is a bijection. Using this you can then show that f−1

is also continuous. �

Example 1.4 Let X = [0, 1) and Y = S1 ⊆ R2, the unit circle. Both of these
are metric subspaces of the Euclidean spaces R and R2, respectively, meaning
they are metric spaces in their own right, and hence topological spaces with
the induced topology from the subspace metric. The function f : [0, 1) → S1
defined by f(t) =

(
cos(2πt), sin(2πt)

)
is a continuous bijection, but it is not a

homeomorphism. To go from the circle to the interval requires tearing the circle
at a point, and this operation is not continuous. �

We can be more precice in proving that [0, 1) and S1 do not have a homeomor-
phism between them. The idea of compactness from metric spaces is a notion
that is preserved by homeomorphisms.

Theorem 1.1. If (X, dX) and (Y, dY ) are metric spaces, if f : X → Y is a
homeomorphism, and if (X, dX) is compact, then (Y, dY ) is compact.

Proof. For let b : N → Y be a sequence. Let a : N → X be defined by
an = f−1(bn) (this is well-defined since f is a bijection and hence has an inverse).
Since (X, dX) is compact, there is a convergent subsequence ak. Let x ∈ X be
the limit, akn → x. Then, since f is continuous, we have f(akn) → f(x). But
f(akn) = bkn , and hence bk is a convergent subsequence in Y , so (Y, dY ) is
compact.

The circle S1 is compact by the Heine-Borel theorem since it is a closed and
bounded subset of R2. The half-open interval [0, 1) is not compact, again by
Heine-Borel, since it is not closed. Since homeomorphisms preserve compact-
ness, there can be no homeomorphism between [0, 1) and S1.

Homeomorphisms give a notion of equivalence between topological spaces. There
is no set of all topological spaces, just like there is no set of all sets, so it is mean-
ingless to say there is an equivalence relation on topological spaces. Still, the
following few theorems highlight what is meant by saying homeomorphisms tell
us which spaces are equivalent.

Theorem 1.2. If (X, τ) is a topological space, then there is a homeomorphism
f : X → X.

Proof. Define f : X → Y by f(x) = x. Then f is bijective and continu-
ous since f−1[V] = V for all V ∈ τ . The inverse is also continuous since(
f−1

)−1
[U ] = f [U ] = U for all U ∈ τ , showing us that f−1 is continuous.

So f is a homeomorphism.

Theorem 1.3. If (X, τX) and (Y, τY ) are topological spaces, and if f : X → Y
is a homeomorphism, then there is a homeomorphism g : Y → X.

Proof. Define g : Y → X via g(y) = f−1(y). Since f is a homeomorphism it is
bijective, meaning g is well-defined. But since f is bijective, f−1 is bijective, so g
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is bijective. Since f−1 is continuous, g is continuous. Lastly, since (f−1)−1 = f ,
and f is continuous, it is true that g−1 is continuous. So g : Y → X is a
homeomorphism.

To prove transitivity, we first need the following theorem.

Theorem 1.4. If (X, τX), (Y, τY ), and (Z, τZ) are topological spaces, if f :
X → Y is a continuous function, and if g : Y → Z is a continuous function,
then g ◦ f : X → Z is continuous.

Proof. Let W ∈ τZ . Since g is continuous, g−1[W] ∈ τY . But since f is
continuous, f−1

[
g−1[W]

]
∈ τX . But (g ◦ f)−1[W] = f−1

[
g−1[W]

]
, so g ◦ f is

continuous.

Theorem 1.5. If (X, τX), (Y, τY ), and (Z, τZ) are topological spaces, if f :
X → Y is a homeomorphism, and if g : Y → Z is a homeomorphism, then
g ◦ f : X → Z is a homeomorphism.

Proof. The composition of bijections is a bijection, so g ◦ f is bijective. The
composition of continuous functions is continuous, so g◦f is continuous. Lastly,
(g ◦ f)−1 = f−1 ◦ g−1, which is the composition of continuous functions since
f−1 and g−1 are continuous, so (g ◦ f)−1 is continuous. That is, g ◦ f is a
homeomorphism.

Homeomorphisms are just rebalellings of topological spaces. Given (X, τX) and
(Y, τY ), and a homeomorphism f : X → Y , given x ∈ X we relabel this as
f(x) = y ∈ Y . Given U ∈ τX we relabel this as f [U ] = V ∈ τY . The real line
R and the imaginary line iR, which is the set of all complex numbers of the
form iy with y ∈ R, are topologically the same. They’re just a line. We took a
real number r ∈ R and relabelled it as ir ∈ iR, but this doesn’t really change
anything. When we talk about the initial and final topologies in a few pages,
this statement will be made clear.

3



Homeomorphisms preserve topological properties.

Theorem 1.6. If (X, τX) is a Hausdorff topological space, if (Y, τY ) is a topo-
logical space, and if f : X → Y is a homeomorphism, then (Y, τY ) is Hausdorff.

Proof. Let y0, y1 ∈ Y with y0 6= y1. Since f is a homeomorphism, it is bijective,
so there exists unique x0, x1 ∈ X such that f(x0) = y0 and f(x1) = y1. Since
y0 6= y1, we have x0 6= x1. But (X, τX) is Hausdorff, so there exists U ,V ∈ τX
such that x ∈ U , y ∈ V, and U ∩ V = ∅. Let Ũ = f [U ] and Ṽ = f [V]. Then,
since f is a homeomorphism, it is bijective, and hence Ũ = (f−1)−1[U ] and
Ṽ = (f−1)−1[V], the pre-image of open sets by a continuous function since f−1

is continuous, and hence Ũ , Ṽ ∈ τY . But y0 ∈ Ũ , y1 ∈ Ṽ, and Ũ ∩ Ṽ = ∅ since:

Ũ ∩ Ṽ = f [U ] ∩ f [V] (Substitution)

= f [U ∩ V] (Since f is bijective)

= f [∅] (Since U and V are disjoint)

= ∅ (The image of the empty set is empty)

Hence (Y, τY ) is Hausdorff.

If the target space (Y, τY ) is Hausdorff, and if f : X → Y is continuous and
injective, you can then prove that (X, τX) is Hausdorff as well. You do not need
f to be a homeomorphism in this direction.

Theorem 1.7. If (X, τX) is a topological space, if (Y, τY ) is a Hausdorff topo-
logical space, and if f : X → Y is a continuous injective function, then (X, τX)
is Hausdorff.

Proof. Let x0, x1 ∈ X, x0 6= x1. Let y0 = f(x0) and y1 = f(x1). Then since f
is injective, y0 6= y1. But (Y, τY ) is Hausdorff, so there exists U ,V ∈ τY such
that y0 ∈ U , y1 ∈ V, and U ∩ V = ∅. But f is continuous, so f−1[U ] ∈ τX and
f−1[V] ∈ τY . But then x ∈ f−1[U ], y ∈ f−1[V], and:

f−1[U ] ∩ f−1[V] = f−1[U ∩ V] = f−1[∅] = ∅ (1)

so (X, τX) is Hausdorff.

Many of the theorems about homeomorphisms use the fact that since f is bi-
jective, (f−1)−1[U ] = U . So in particular, if U ⊆ X is open, then f [U ] ⊆ Y is
open. Functions with this property are called open mappings.

Definition 1.2 (Open Mapping) An open mapping from a topological space
(X, τY ) to a topological space (Y, τY ) is a function f : X → Y such that for all
U ∈ τX it is true that f [U ] ∈ τY . �

Open mappings do not need to be continuous and continuous functions do not
need to be open mappings.
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Example 1.5 Let f : R → R be defined by f(x) = x2, with the standard
Euclidean topology on R. This is continuous, since it is a polynomial, but not
an open mapping. The forward image of (−1, 1) is f

[
(−1, 1)

]
= [0, 1), which

is not open. �

Example 1.6 Let X = Y = R, τX = { ∅, R }, and τY = P(R), and f : R→ R
be defined by f(x) = x. Then f is not continuous. The pre-image of { 0 } is
{ 0 }. { 0 } is an element of P(R), but not { ∅, R }, so f is not continuous. f is an
open mapping. There are only two elements of τX to check. We have f [∅] = ∅
and f [R] = R, both of which are elements of τY , so f is an open mapping. �

Theorem 1.8. If (X, τX), (Y, τY ), and (Z, τZ) are topological spaces, if f :
X → Y and g : Y → Z are open mappings, then g ◦ f is an open mapping.

Proof. Given U ∈ τX , we have:(
g ◦ f

)
[U ] = g

[
f [U ]

]
(2)

but since f is an open mapping, f [U ] ∈ τY . But since g is an open mapping,
g
[
f [U ]

]
∈ τZ . Therefore g ◦ f is an open mapping.

Theorem 1.9. If (X, τX) and (Y, τY ) are topological spaces, and if f : X → Y
is a function, then f is a homeomorphism if and only if f is continuous, bijective,
and an open mapping.

Proof. If f is a homeomorphism it is continuous and bijective. It is also an open
mapping since if U ∈ τX , then:

f [U ] = (f−1)−1[U ] (3)

but f−1 is continuous since f is a homeomorphism, so f [U ] is the pre-image of
an open set under a continuous function and is therefore open. That is, f is
an open mapping. Now suppose f is a continuous bijective open mapping. Let
U ∈ τX . Then:

(f−1)−1[U ] = f [U ] (4)

But U is an open mapping, so f [U ] ∈ τY . Therefore f−1 is continuous and f is
a homeomorphism.

Homeomorphisms preserve the notion of sequential as well. First, the following
theorem about sequentially open sets and continuous functions.

Theorem 1.10. If (X, τX) and (Y, τY ) are topological spaces, if f : X → Y is
continuous, and if V ⊆ Y is sequentially open, then f−1[V] is sequentially open.

Proof. Suppose not. Then there is an x ∈ f−1[V] and a sequence a : N → X
such that an → x and for all N ∈ N there is an n ∈ N such that n > N and
an /∈ f−1[V]. But f is continuous, so it is sequentially continuous, and therefore
f(an) → f(x). But since x ∈ f−1[V] we have f(x) ∈ V. But V is sequentially
open, so if f(an) → f(x), then there is an N ∈ N such that for all n ∈ N with
n > N we have f(an) ∈ V. But then for all n > N , an ∈ f−1[V], a contradiction.
So f−1[V] is sequentially open.
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Theorem 1.11. If (X, τX) is a sequential topological space, if (Y, τY ) is a
topological space, and if f : X → Y is a homeomorphism, then (Y, τY ) is
sequential.

Proof. Let V ⊆ Y be sequentially open. Since f is a homeomorphism, f is
continuous, so f−1[V] is sequentially open. But (X, τX) is sequential, so if
f−1[V] is sequentially open, then it is open. But since f is a homeomorphism, it
is an open mapping, meaning f

[
f−1[V]

]
∈ τY . But f is bijective, so f

[
f−1[V]

]
=

V. That is, V is open, and (Y, τY ) is sequential.

Theorem 1.12. If (X, τX) is a second-countable topological space, if (Y, τY )
is a topological space, and if f : X → Y is a homeomorphism, then (Y, τY ) is
second-countable.

Proof. Since (X, τX) is second-countable, there is a countable basis B. Define
B̃ by:

B̃ = { f [U ] | U ∈ B } (5)

But f is a homeomorphism, so it is an open mapping, meaning for all U ∈ τX ,
f [U ] is open, so B̃ ⊆ τY . Moreover since B is countable, so is B̃. Let’s show B̃
is a basis. Given an open set V ∈ τY , let U = f−1[V]. Then U ∈ τX since f
is continuous, and since B is a basis there is some O ⊆ B such that

⋃
O = U .

Define Õ via:
Õ = { f [W] | W ∈ O } (6)

Then Õ ⊆ B̃, by the definition of B̃, and since f is a bijection we may conclude
that

⋃
Õ = f [U ] = V. Hence B̃ is a countable basis for τY .

Similar to open mappings, one often studies closed mappings. Closed mappings
arise quite frequently in functional analysis and geometry.

Definition 1.3 (Closed Mappings) A closed mapping from a topological
space (X, τX) to a topological space (Y, τY ) is a function f : X → Y such that
for every closed C ⊆ X it is true that f [C] ⊆ Y is closed. �

Example 1.7 The function f : R → R defined by f(x) = x2 is closed but not
open. �

Example 1.8 Give X = Y = R, τX = { ∅, R }, and τY = P(R), the identity
function f(x) = x is closed (and open) but not continuous. �

Open mappings, closed mappings, and continuous functions are three distinct
notions.

Theorem 1.13. If (X, τX) and (Y, τY ) are topological spaces, and if f : X → Y
is a bijective open mapping, then it is a closed mapping.

Proof. Let C ⊆ X be closed. Then X \ C is open. But then:

f [C] = f [X \ (X \ C)] (7)
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But f is bijective, so:

f [X \ (X \ C)] = f [X] \ f [X \ C] (8)

But f is an open mapping, so f [X \ C] is open. But f is bijective, so f [X] = Y ,
and therefore f [X]\f [X \C] is the complement of an open set, which is therefore
closed. Thus, f is a closed mapping.

Without bijectivity, this statement fails. The function f : R → R defined by
f(x) = x2 is a continuous closed mapping that is not an open mapping. The
reason being that f is not bijective.

Homeomorphisms can also be described via closed mappings.

Theorem 1.14. If (X, τX) and (Y, τY ) are topological spaces, and if f : X → Y
is a function, then f is a homeomorphism if and only if f is continuous, bijective,
and a closed mapping.

Proof. f is a homeomorphism if and only if f is continuous, bijective, and open.
If f is bijective, then f is open if and only if f is closed, so f is a homeomorphism
if and only if f is continuous, bijective, and a closed mapping.

2 Subspaces

In the study of metric spaces, given such a space (X, d) and a subset A ⊆ X,
we could restrict the metric d : X×X → R to dA : A×A→ R, making (A, dA)
a metric space. This gave us a metric topology on A, and hence allowed us to
think of A as a topological space, with the topology stemming from the metric
topology on A. We then proved that a subset U of A is open with respect to
this subspace topology if and only if there is an open subset V ⊆ X (that is
open with respect to the metric topology on X) such that U = A ∩ V. In the
general topological setting we lack a metric, but this theorem allows us to define
subspaces solely in terms of open sets.

Definition 2.1 (Subspace Topology) The subspace topology of a subset
A ⊆ X with respect to a topological space (X, τ) is the set τA defined by:

τA = {U ⊆ A | there exists V ∈ τ such that U = A ∩ V } (9)

�

I am calling this a topology, but proof by definition is generally a bad practice.
Let’s prove the subspace topology is indeed a topology on A.

Theorem 2.1. If (X, τ) is a topological space, if A ⊆ X, and if τA is the
subspace topology on A, then τA is a topology on A.

Proof. We must prove the four properties of a topology. First, ∅ ∈ τA since
∅ ∈ τ and ∅ = ∅ ∩ A. Next, A ∈ τA since X ∈ τ and since A ⊆ X we have
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A = A ∩X. If U ,V ∈ τA then there exists Ũ , Ṽ ∈ τ such that U = A ∩ Ũ and
V = A ∩ Ṽ. But then:

U ∩ V =
(
A ∩ Ũ

)
∩
(
A ∩ Ṽ

)
= A ∩

(
Ũ ∩ Ṽ

)
(10)

but τ is a topology, so if Ũ , Ṽ ∈ τ , then Ũ ∩ Ṽ ∈ τ . Therefore, U ∩ V ∈ τA.
Lastly, if O ⊆ τA, then for all U ∈ O there is a Ũ ∈ τ such that U = A∩ Ũ . Let
Õ be the collection of all such Ũ for all U ∈ O. Then:⋃

O =
⋃
U∈O
U (11)

=
⋃
Ũ∈Õ

(
A ∩ Ũ

)
(12)

= A ∩
⋃
Ũ∈Õ

Ũ (13)

= A ∩
⋃
Õ (14)

But Õ ⊆ τ and τ is a topology, so
⋃
Õ ∈ τ , and hence

⋃
O ∈ τA. That is, τA

is a topology on A.

Example 2.1 The familiar examples of topological subspaces are just metric
subspaces. The circle S1 is a subspace of R2. The closed interval [a, b] ⊆ R and
the open interval (a, b) ⊆ R are subspaces of R with their respective subspace
topologies. The unit sphere S2 lives in R3 as a subspace as well. �

Definition 2.2 (Inclusion Map) The inclusion map of a subset A ⊆ X into
the set X is the function ι : A→ X defined by ι(x) = x. �

Theorem 2.2. If (X, τ) is a topological space, if A ⊆ X, if τA is the subspace
topology on A, and if ι : A→ X is the inclusion map, then ι is continuous.

Proof. Let V ∈ τ . Then by the definition of pre-image, ι−1[V] is the set of all
x ∈ A such that ι(x) ∈ V. But ι(x) = x, so ι−1[V] is the set of all x ∈ A such
that x ∈ V. That is, the set of all elements in V ∩ A. But V ∩ A is open in A
since V is open in X. Thus, ι is continuous.

Theorem 2.3. If (X, τ) is a topological space, and if τ ′A is a topology on A
such that the inclusion map ι : A→ X is continuous, then τA ⊆ τ ′A where τA is
the subspace topology.

Proof. Let U ∈ τA. Since τA is the subspace topology, there is a V ∈ τ such
that U = A ∩ V. But then ι−1[V] = U . Since ι is continuous with respect to τ ′A
and τ it must be true that U ∈ τ ′A. Hence, τA ⊆ τ ′A.

The subspace topology is the smallest topology that makes the inclusion map
continuous. This is a way of defining the subspace topology altogether, the
intersection of all topologies on A that make ι continuous.
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This idea of defining a topology in terms of a function that you want to be
continuous is common. There are two directions. If we have a topological space
(X, τ), a set Y , and a function f : X → Y , then the final topology on Y with
respect to f is the largest topology τf that makes f continuous. If X is a set,
(Y, τ) is a topological space, and f : X → Y is a function, then the initial
topology is the smallest topology τf on X that makes f continuous.

Definition 2.3 (Final Topology) The final topology on a set Y with respect
to a topological space (X, τ) and a function f : X → Y is the set τf defined by:

τf = { V ⊆ Y | f−1[V] ∈ τ } (15)

That is, the set of all subsets of Y whose pre-image is open in X. �

Again, avoiding proof by definition, the final topology is a topology.

Theorem 2.4. If (X, τ) is a topological space, if Y is a set, if f : X → Y is a
function, and if τf is the final topology, then τf is a topology on Y .

Proof. First, ∅ ∈ τf since f−1[∅] = ∅ and ∅ ∈ τ . Next, Y ∈ τf since f−1[Y ] = X
and X ∈ τ , since τ is a topology. Suppose U ,V ∈ τf . Then:

f−1[U ∩ V] = f−1[U ] ∩ f−1[V] (16)

But if U ,V ∈ τf , then f−1[U ] ∈ τ and f−1[V] ∈ τ . But τ is a topology on X,
so f−1[U ] ∩ f−1[V] ∈ τ . Hence, U ∩ V ∈ τf . Lastly, let O ⊆ τf . Then for all
U ∈ O it is true that f−1[U ] ∈ τ . But then:

f−1
[⋃
O
]

= f−1
[ ⋃
U∈O
U
]

(17)

=
⋃
U∈O

f−1[U ] (18)

But τ is a topology, so this final union is an element of τ . Hence,
⋃
O ∈ τf and

τf is a topology.

Theorem 2.5. If (X, τ) is a topological space, if Y is a set, and if f : X → Y
is a function, then f is continuous with respect to τ and the final topology τf .

Proof. Given V ∈ τf , by definition of the final topology we have f−1[V] ∈ τ , so
f is continuous.

Theorem 2.6. If (X, τ) is a topological space, if Y is a set, if f : X → Y
is a function, if τf is the final topology, and if τY is a topology such that f is
continuous with respect to τ and τY , then τY ⊆ τf .

Proof. For let V ∈ τY . Since f is continuous with respect to τ and τY it is true
that f−1[V] ∈ τ . But τf is the final topology which is the set of all such U ⊆ Y
such that f−1[U ] ∈ τ , and therefore V ∈ τf . That is, τY ⊆ τf .
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This is what was meant by the claim that the final topology is the largest
topology that makes f continuous.

Definition 2.4 (Initial Topology) The initial topology on a set X with re-
spect to a topological space (Y, τ) and a function f : X → Y is the set τf
defined by:

τf = { f−1[V] | V ∈ τ } (19)

That is, the set of all pre-images of open subsets of Y . �

The initial topology is, in fact, a topology.

Theorem 2.7. If X is a set, if (Y, τ) is a topological space, and if f : X → Y
is a function, then the initial topology τf is a topology on X.

Proof. We have that ∅ = f−1[∅], so ∅ ∈ τf . We also have X = f−1[Y ], so

X ∈ τf . If U ,V ∈ τf , then there are Ũ , Ṽ ∈ τ such that U = f−1[Ũ ] and

V = f−1[Ṽ]. But then:

U ∩ V = f−1[Ũ ] ∩ f−1[Ṽ] = f−1[Ũ ∩ Ṽ] (20)

But τ is a topology, so Ũ ∩ Ṽ ∈ τ , and hence U ∩V ∈ τf . Lastly, if O ⊆ τf , then

for all U ∈ O there is a Ũ ∈ τ such that U = f−1[Ũ ]. Let Õ ⊆ τ be the set of
all such Ũ . Then: ⋃

O =
⋃
U∈O
U (21)

=
⋃
Ũ∈Õ

f−1[Ũ ] (22)

= f−1
[ ⋃
Ũ∈Õ

Ũ
]

(23)

= f−1
[⋃
Õ
]

(24)

But τ is a topology so
⋃
Õ ∈ τ and therefore

⋃
O ∈ τf . So τf is a topology.

Theorem 2.8. If X is a set, if (Y, τ) is a topological space, if f : X → Y is a
function, and if τf is the initial topology, then f is continuous.

Proof. Let V ∈ τ . By the definition of the initial topology, f−1[V] ∈ τf , so f is
continuous.

Theorem 2.9. If X is a set, if (Y, τ) is a topological space, if f : X → Y is a
function, if τf is the initial topology with respect of f and (Y, τ), and if τX is a
topology such that f is continuous with respect to τX and τ , then τf ⊆ τX .

Proof. Let U ∈ τf . Then by the definition of the initial topology, there is a

Ũ ∈ τ such that f−1[Ũ ] = U . But f is continuous with respect to τX and τ , so
if Ũ ∈ τ , then f−1[Ũ ] ∈ τX . That is, U ∈ τX and therefore τf ⊆ τX .
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The intial topology is therefore the smallest topology that makes f continuous.

Theorem 2.10. If (X, τ) is a topological space, if A ⊆ X, if ι : A→ X is the
inclusion mapping, and if τι is the initial topology with respect to (X, τ) and ι,
then τι = τA where τA is the subspace topology.

Proof. τA is a topology that makes ι continuous, and hence by the previous
theorem, τι ⊆ τA. Suppose U ∈ τA. Then there is an open set V ∈ τ such that
U = V ∩ A. By the definition of the inclusion mapping, ι−1[V] = V ∩ A, so
ι−1[V] = U and therefore U ∈ τι. That is, τA ⊆ τι. Therefore, τA = τι.

A few pages ago it was stated that homeomorphisms are just relabellings of
spaces. With the initial and final topology we can make this precise.

Theorem 2.11. If (X, τ) is a topological space, if Y is a set, and if f : X →
Y is a bijection, then there is a unique topology τY on Y such that f is a
homeomorphism.

Proof. Let τY be the final topology from f . This makes f continuous. Given
any topology τ ′Y that makes f continuous, since τY is the final topology, we have
τ ′Y ⊆ τY . But then τY is also the initial topology with respect to f−1, making
f−1 continuous. Then given any topology τ ′′Y that makes f−1 continuous, we
have τY ⊆ τ ′′Y . Hence any topology τ ′′′Y that makes f and f−1 continuous must
have τY ⊆ τ ′′′Y and τ ′′′Y ⊆ τY , so τY = τ ′′′Y . That is, τY is the unique topology
that makes f a homeomorphism.

The subspace topology preserves many (but not all) properties of the ambient
space.

Theorem 2.12. If (X, τ) is a Hausdorff topological space, if A ⊆ X, and if τA
is the subspace topology, then (A, τA) is a Hausdorff topological space.

Proof. Let x, y ∈ A with x 6= y. Since A ⊆ X we have x, y ∈ X. But x 6= y
and (X, τ) is Hausdorff, so there exist U ,V ∈ τ such that x ∈ U , y ∈ V, and
U ∩ V = ∅. Let Ũ = A ∩ U and Ṽ = A ∩ V. Since x ∈ A and x ∈ U , we have
x ∈ A ∩ U . Since y ∈ A and y ∈ V, it is also true that y ∈ A ∩ V. So x ∈ Ũ and
y ∈ Ṽ. But also:

Ũ ∩ Ṽ =
(
A ∩ U

)
∩
(
A ∩ V

)
= A ∩

(
U ∩ V

)
= A ∩ ∅ = ∅ (25)

so Ũ and Ṽ are open sets such that x ∈ Ũ , y ∈ Ṽ, and Ũ ∩ Ṽ = ∅. That is,
(A, τA) is Hausdorff.

Theorem 2.13. If (X, τ) is a second-countable topological space, if A ⊆ X,
and if τA is the subspace topology, then (A, τA) is second-countable.

Proof. Since (X, τ) is second-countable, there is a countable basis B ⊆ τ . That
is, there is a surjection U : N→ B so that we may list the elements as:

B = {U0, . . . , Un, . . . } (26)
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Let B̃ ⊆ τA be defined by:

B̃ = {A ∩ Un | n ∈ N } (27)

B̃ is countable since the elements are indexed by the natural numbers. We now
must show that B̃ is a basis for (A, τA). That is, given Ũ ∈ τA we must find
Õ ⊆ B̃ such that

⋃
Õ = Ũ . Since Ũ ∈ τA, by definition of the subspace topology

there is some V ∈ τ such that Ũ = A ∩ V. But B is a basis for τ so there is
O ⊆ B such that

⋃
O = V. Define Õ via:

Õ = {A ∩W | W ∈ O } (28)

Then by definition of B̃ we have Õ ⊆ B̃. Since the elements W ∈ O are subsets
of V, and since Ũ = A ∩ V, we have A ∩ W ⊆ Ũ for all W ∈ O, and hence⋃
Õ ⊆ Ũ . Reversing this, let x ∈ Ũ . Then x ∈ A ∩ V, and hence x ∈ V. But⋃
O = V so there is someW ∈ O such that x ∈ W. But then x ∈ A and x ∈ W,

and hence x ∈ A∩W. But A∩W ∈ Õ, so x ∈
⋃
Õ. Hence, Ũ ⊆

⋃
Õ, meaning

Ũ =
⋃
Õ. So B̃ is a countable basis of τA and (A, τA) is second-countable.

Theorem 2.14. If (X, τ) is a first-countable topological space, if A ⊆ X, and
if τA is the subspace topology, then (A, τA) is a first-countable topological space.

Proof. Let x ∈ A. Since A ⊆ X we have that x ∈ X. But (X, τ) is first count-
able, so there is a countable neighborhood basis B of x. Since B is countable,
there is a surjection U : N→ B so that we may write the elements as:

B = {U0, . . . , Un, . . . } (29)

Define B̃ as:
B̃ = {A ∩ Un | n ∈ N } (30)

The set B̃ is countable. We must now show it is a neighborhood basis of x.
First, for all V ∈ B̃ we have x ∈ V. For if V ∈ B̃ we can write V = A ∩ Un for
some n ∈ N. But B is a neighborhood basis for x and Un ∈ B, so x ∈ Un. But
x ∈ A, and hence x ∈ A ∩ Un. So every element of B̃ contains x. If Ṽ ∈ τA
is such that x ∈ Ṽ, then there is a V ∈ τ such that Ṽ = A ∩ V. But B is a
neighborhood basis of x, so there is a Un ∈ B such that x ∈ Un and Un ⊆ V.
But then x ∈ A ∩ Un and A ∩ Un ⊆ A ∩ V = Ṽ. But A ∩ Un is an element of B̃,
showing us that (A, τA) is first-countable.

Subspaces of sequential spaces do not need to be sequential. Spaces where every
subspace is sequential are given a name.

Definition 2.5 (Fréchet-Urysohn Topological Space) A Fréchet-Urysohn
topological space is a topological space (X, τ) such that for all A ⊆ X it is
true that (A, τA) is a sequential topological space where τA is the subspace
topology. �

Theorem 2.15. If (X, τ) is a first-countable topological space, then it is a
Fréchet-Urysohn topological space.
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Proof. Since first-countable spaces are sequential, and every subspace of a first-
countable space is first-countable, every subspace of a first-countable space is
also sequential, and hence (X, τ) is a Fréchet-Urysohn space.

Theorem 2.16. If (X, τ) is a second-countable topological space, then it is a
Fréchet-Urysohn space.

Proof. Since second-countable spaces are first-countable, this follows from the
previous theorem.

Theorem 2.17. If (X, τ) is a metrizable topological space, then it is a Fréchet-
Urysohn space.

Proof. Since metrizable spaces are first-countable, this follows from a previous
theorem.

The easiest space to describe that is sequential but not Fréchet-Urysohn requires
the product topology, which we’ll get to soon enough.

Subspaces give rise to the notion of topological embeddings, which are another
special type of function commonly studied in topology, analysis, and geometry.

Definition 2.6 (Topological Embedding) A topological embedding of a
topological space (X, τX) to a topological space (Y, τY ) is a function f : X → Y
such that f : X → f [X] is a homeomorphism between X and f [X] with respect
to the subspace topology τYf[X]

. �

Topological embeddings allow us to think of a topological space (X, τX) as just
a subspace of (Y, τY ) with the subspace topology.

Theorem 2.18. If (X, τ) is a topological space, if A ⊆ X, if τA is the subspace
topology, and if ι is the inclusion mapping, then ι : A → X is a topological
embedding.

Proof. The image of A is ι[A] = A. ι : A → ι[A] is then just the identity
function ι : A→ A with ι(x) = x, which is a homeomorphism.
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