Point-Set Topology: Lecture 14

Ryan Maguire

July 19, 2023

1 Homeomorphisms and Open Mappings

Thus far we've discussed conditions for when continuity can be described by sequences. It is worthwhile studying the general notion of continuity as well. As a reminder, given two topological spaces (X, τ_X) and (Y, τ_Y) , a continuous function from X to Y is a function $f : X \to Y$ such that for all $\mathcal{V} \in \tau_Y$ it is true that $f^{-1}[\mathcal{V}] \in \tau_X$. That is, the pre-image of an open set is open. It was proved this is equivalent to the pre-image of a closed set being closed using some of the set-theoretic laws of pre-image and set difference. *Homeomorphism* is a stronger notion. It tells us when two topological spaces are the same.

Definition 1.1 (Homeomorphism) A homeomorphism from a topological space (X, τ_X) to a topological space (Y, τ_Y) is a bijective continuous function $f: X \to Y$ such that f^{-1} is continuous.

Example 1.1 Let (X, τ) be any topological space, and $f : X \to X$ be the identity function f(x) = x. Then f is a homeomorphism. It is certainly a bijection, but it is also continuous. Given $\mathcal{U} \in \tau$ we have $f^{-1}[\mathcal{U}] = \mathcal{U}$, which is an element of τ . Given $\mathcal{V} \in \tau$ we have $(f^{-1})^{-1}[\mathcal{V}] = f[\mathcal{V}] = \mathcal{V}$, which is in τ (Note: $(f^{-1})^{-1}[\mathcal{V}] = f[\mathcal{V}] = \mathcal{V}$ is true since f is a bijection). This shows f is a homeomorphism.

Example 1.2 Take $X = Y = \mathbb{R}$ and give both of these the standard Euclidean topology $\tau_{\mathbb{R}}$. The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$ is a homeomorphism. It is bijective, continuous, and the inverse is given by $f^{-1}(x) = \sqrt[3]{x} = x^{1/3}$, which is also continuous.

Example 1.3 Any continuous bijective function $f : \mathbb{R} \to \mathbb{R}$ is a homeomorphism with respect to the standard topology. This is **not** true for general topological spaces. It is not true that a continuous bijection must have a continuous inverse. The real line is special in this regard. This property comes from the fact that the real line has a complete total ordered (via the < symbol). If $f : \mathbb{R} \to \mathbb{R}$ is a continuous bijection, it must be strictly increasing or strictly decreasing. If not, if there are a < b < c with f(a) < f(b) and f(c) < f(b), or f(b) < f(a) and f(b) < f(c), then by the intermediate value theorem there must be values $x_0 \in (a, b)$ and $x_1 \in (b, c)$ such that $f(x_0) = f(x_1)$,

violating the fact that f is a bijection. Using this you can then show that f^{-1} is also continuous.

Example 1.4 Let X = [0, 1) and $Y = \mathbb{S}^1 \subseteq \mathbb{R}^2$, the unit circle. Both of these are metric subspaces of the Euclidean spaces \mathbb{R} and \mathbb{R}^2 , respectively, meaning they are metric spaces in their own right, and hence topological spaces with the induced topology from the subspace metric. The function $f : [0, 1) \to \mathbb{S}^1$ defined by $f(t) = (\cos(2\pi t), \sin(2\pi t))$ is a continuous bijection, but it is *not* a homeomorphism. To go from the circle to the interval requires *tearing* the circle at a point, and this operation is not continuous.

We can be more precice in proving that [0, 1) and \mathbb{S}^1 do not have a homeomorphism between them. The idea of *compactness* from metric spaces is a notion that is preserved by homeomorphisms.

Theorem 1.1. If (X, d_X) and (Y, d_Y) are metric spaces, if $f : X \to Y$ is a homeomorphism, and if (X, d_X) is compact, then (Y, d_Y) is compact.

Proof. For let $b : \mathbb{N} \to Y$ be a sequence. Let $a : \mathbb{N} \to X$ be defined by $a_n = f^{-1}(b_n)$ (this is well-defined since f is a bijection and hence has an inverse). Since (X, d_X) is compact, there is a convergent subsequence a_k . Let $x \in X$ be the limit, $a_{k_n} \to x$. Then, since f is continuous, we have $f(a_{k_n}) \to f(x)$. But $f(a_{k_n}) = b_{k_n}$, and hence b_k is a convergent subsequence in Y, so (Y, d_Y) is compact.

The circle \mathbb{S}^1 is compact by the Heine-Borel theorem since it is a closed and bounded subset of \mathbb{R}^2 . The half-open interval [0, 1) is not compact, again by Heine-Borel, since it is not closed. Since homeomorphisms preserve compactness, there can be no homeomorphism between [0, 1) and \mathbb{S}^1 .

Homeomorphisms give a notion of *equivalence* between topological spaces. There is no set of all topological spaces, just like there is no set of all sets, so it is meaningless to say there is an *equivalence relation on topological spaces*. Still, the following few theorems highlight what is meant by saying homeomorphisms tell us which spaces are equivalent.

Theorem 1.2. If (X, τ) is a topological space, then there is a homeomorphism $f: X \to X$.

Proof. Define $f : X \to Y$ by f(x) = x. Then f is bijective and continuous since $f^{-1}[\mathcal{V}] = \mathcal{V}$ for all $\mathcal{V} \in \tau$. The inverse is also continuous since $(f^{-1})^{-1}[\mathcal{U}] = f[\mathcal{U}] = \mathcal{U}$ for all $\mathcal{U} \in \tau$, showing us that f^{-1} is continuous. So f is a homeomorphism.

Theorem 1.3. If (X, τ_X) and (Y, τ_Y) are topological spaces, and if $f : X \to Y$ is a homeomorphism, then there is a homeomorphism $g : Y \to X$.

Proof. Define $g: Y \to X$ via $g(y) = f^{-1}(y)$. Since f is a homeomorphism it is bijective, meaning g is well-defined. But since f is bijective, f^{-1} is bijective, so g

is bijective. Since f^{-1} is continuous, g is continuous. Lastly, since $(f^{-1})^{-1} = f$, and f is continuous, it is true that g^{-1} is continuous. So $g : Y \to X$ is a homeomorphism.

To prove *transitivity*, we first need the following theorem.

Theorem 1.4. If (X, τ_X) , (Y, τ_Y) , and (Z, τ_Z) are topological spaces, if $f : X \to Y$ is a continuous function, and if $g : Y \to Z$ is a continuous function, then $g \circ f : X \to Z$ is continuous.

Proof. Let $\mathcal{W} \in \tau_Z$. Since g is continuous, $g^{-1}[\mathcal{W}] \in \tau_Y$. But since f is continuous, $f^{-1}[g^{-1}[\mathcal{W}]] \in \tau_X$. But $(g \circ f)^{-1}[\mathcal{W}] = f^{-1}[g^{-1}[\mathcal{W}]]$, so $g \circ f$ is continuous.

Theorem 1.5. If (X, τ_X) , (Y, τ_Y) , and (Z, τ_Z) are topological spaces, if $f : X \to Y$ is a homeomorphism, and if $g : Y \to Z$ is a homeomorphism, then $g \circ f : X \to Z$ is a homeomorphism.

Proof. The composition of bijections is a bijection, so $g \circ f$ is bijective. The composition of continuous functions is continuous, so $g \circ f$ is continuous. Lastly, $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$, which is the composition of continuous functions since f^{-1} and g^{-1} are continuous, so $(g \circ f)^{-1}$ is continuous. That is, $g \circ f$ is a homeomorphism.

Homeomorphisms are just rebalellings of topological spaces. Given (X, τ_X) and (Y, τ_Y) , and a homeomorphism $f : X \to Y$, given $x \in X$ we relabel this as $f(x) = y \in Y$. Given $\mathcal{U} \in \tau_X$ we relabel this as $f[\mathcal{U}] = \mathcal{V} \in \tau_Y$. The real line \mathbb{R} and the imaginary line $i\mathbb{R}$, which is the set of all complex numbers of the form iy with $y \in \mathbb{R}$, are topologically the same. They're just a line. We took a real number $r \in \mathbb{R}$ and relabelled it as $ir \in i\mathbb{R}$, but this doesn't really change anything. When we talk about the *initial* and *final* topologies in a few pages, this statement will be made clear.

Homeomorphisms preserve topological properties.

Theorem 1.6. If (X, τ_X) is a Hausdorff topological space, if (Y, τ_Y) is a topological space, and if $f: X \to Y$ is a homeomorphism, then (Y, τ_Y) is Hausdorff.

Proof. Let $y_0, y_1 \in Y$ with $y_0 \neq y_1$. Since f is a homeomorphism, it is bijective, so there exists unique $x_0, x_1 \in X$ such that $f(x_0) = y_0$ and $f(x_1) = y_1$. Since $y_0 \neq y_1$, we have $x_0 \neq x_1$. But (X, τ_X) is Hausdorff, so there exists $\mathcal{U}, \mathcal{V} \in \tau_X$ such that $x \in \mathcal{U}, y \in \mathcal{V}$, and $\mathcal{U} \cap \mathcal{V} = \emptyset$. Let $\tilde{\mathcal{U}} = f[\mathcal{U}]$ and $\tilde{\mathcal{V}} = f[\mathcal{V}]$. Then, since f is a homeomorphism, it is bijective, and hence $\tilde{\mathcal{U}} = (f^{-1})^{-1}[\mathcal{U}]$ and $\tilde{\mathcal{V}} = (f^{-1})^{-1}[\mathcal{V}]$, the pre-image of open sets by a continuous function since f^{-1} is continuous, and hence $\tilde{\mathcal{U}}, \tilde{\mathcal{V}} \in \tau_Y$. But $y_0 \in \tilde{\mathcal{U}}, y_1 \in \tilde{\mathcal{V}}$, and $\tilde{\mathcal{U}} \cap \tilde{\mathcal{V}} = \emptyset$ since:

$ ilde{\mathcal{U}} \cap ilde{\mathcal{V}} = f[\mathcal{U}] \cap f[\mathcal{V}]$	(Substitution)
$= f[\mathcal{U} \cap \mathcal{V}]$	(Since f is bijective)
$= f[\emptyset]$	(Since \mathcal{U} and \mathcal{V} are disjoint)
$= \emptyset$	(The image of the empty set is empty)

Hence (Y, τ_Y) is Hausdorff.

If the target space (Y, τ_Y) is Hausdorff, and if $f : X \to Y$ is continuous and injective, you can then prove that (X, τ_X) is Hausdorff as well. You do not need f to be a homeomorphism in this direction.

Theorem 1.7. If (X, τ_X) is a topological space, if (Y, τ_Y) is a Hausdorff topological space, and if $f: X \to Y$ is a continuous injective function, then (X, τ_X) is Hausdorff.

Proof. Let $x_0, x_1 \in X, x_0 \neq x_1$. Let $y_0 = f(x_0)$ and $y_1 = f(x_1)$. Then since f is injective, $y_0 \neq y_1$. But (Y, τ_Y) is Hausdorff, so there exists $\mathcal{U}, \mathcal{V} \in \tau_Y$ such that $y_0 \in \mathcal{U}, y_1 \in \mathcal{V}$, and $\mathcal{U} \cap \mathcal{V} = \emptyset$. But f is continuous, so $f^{-1}[\mathcal{U}] \in \tau_X$ and $f^{-1}[\mathcal{V}] \in \tau_Y$. But then $x \in f^{-1}[\mathcal{U}], y \in f^{-1}[\mathcal{V}]$, and:

$$f^{-1}[\mathcal{U}] \cap f^{-1}[\mathcal{V}] = f^{-1}[\mathcal{U} \cap \mathcal{V}] = f^{-1}[\emptyset] = \emptyset$$
(1)

so (X, τ_X) is Hausdorff.

Many of the theorems about homeomorphisms use the fact that since f is bijective, $(f^{-1})^{-1}[\mathcal{U}] = \mathcal{U}$. So in particular, if $\mathcal{U} \subseteq X$ is open, then $f[\mathcal{U}] \subseteq Y$ is open. Functions with this property are called *open mappings*.

Definition 1.2 (Open Mapping) An open mapping from a topological space (X, τ_Y) to a topological space (Y, τ_Y) is a function $f : X \to Y$ such that for all $\mathcal{U} \in \tau_X$ it is true that $f[\mathcal{U}] \in \tau_Y$.

Open mappings do not need to be continuous and continuous functions do not need to be open mappings.

Example 1.5 Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$, with the standard Euclidean topology on \mathbb{R} . This is continuous, since it is a polynomial, but not an open mapping. The forward image of (-1, 1) is f[(-1, 1)] = [0, 1), which is not open.

Example 1.6 Let $X = Y = \mathbb{R}$, $\tau_X = \{\emptyset, \mathbb{R}\}$, and $\tau_Y = \mathcal{P}(\mathbb{R})$, and $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = x. Then f is *not* continuous. The pre-image of $\{0\}$ is $\{0\}$. $\{0\}$ is an element of $\mathcal{P}(\mathbb{R})$, but not $\{\emptyset, \mathbb{R}\}$, so f is not continuous. f is an open mapping. There are only two elements of τ_X to check. We have $f[\emptyset] = \emptyset$ and $f[\mathbb{R}] = \mathbb{R}$, both of which are elements of τ_Y , so f is an open mapping.

Theorem 1.8. If (X, τ_X) , (Y, τ_Y) , and (Z, τ_Z) are topological spaces, if $f : X \to Y$ and $g : Y \to Z$ are open mappings, then $g \circ f$ is an open mapping.

Proof. Given $\mathcal{U} \in \tau_X$, we have:

$$(g \circ f)[\mathcal{U}] = g[f[\mathcal{U}]] \tag{2}$$

but since f is an open mapping, $f[\mathcal{U}] \in \tau_Y$. But since g is an open mapping, $g[f[\mathcal{U}]] \in \tau_Z$. Therefore $g \circ f$ is an open mapping.

Theorem 1.9. If (X, τ_X) and (Y, τ_Y) are topological spaces, and if $f : X \to Y$ is a function, then f is a homeomorphism if and only if f is continuous, bijective, and an open mapping.

Proof. If f is a homeomorphism it is continuous and bijective. It is also an open mapping since if $\mathcal{U} \in \tau_X$, then:

$$f[\mathcal{U}] = (f^{-1})^{-1}[\mathcal{U}]$$
(3)

but f^{-1} is continuous since f is a homeomorphism, so $f[\mathcal{U}]$ is the pre-image of an open set under a continuous function and is therefore open. That is, f is an open mapping. Now suppose f is a continuous bijective open mapping. Let $\mathcal{U} \in \tau_X$. Then:

$$(f^{-1})^{-1}[\mathcal{U}] = f[\mathcal{U}] \tag{4}$$

But \mathcal{U} is an open mapping, so $f[\mathcal{U}] \in \tau_Y$. Therefore f^{-1} is continuous and f is a homeomorphism.

Homeomorphisms preserve the notion of *sequential* as well. First, the following theorem about sequentially open sets and continuous functions.

Theorem 1.10. If (X, τ_X) and (Y, τ_Y) are topological spaces, if $f : X \to Y$ is continuous, and if $\mathcal{V} \subseteq Y$ is sequentially open, then $f^{-1}[\mathcal{V}]$ is sequentially open.

Proof. Suppose not. Then there is an $x \in f^{-1}[\mathcal{V}]$ and a sequence $a : \mathbb{N} \to X$ such that $a_n \to x$ and for all $N \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that n > N and $a_n \notin f^{-1}[\mathcal{V}]$. But f is continuous, so it is sequentially continuous, and therefore $f(a_n) \to f(x)$. But since $x \in f^{-1}[\mathcal{V}]$ we have $f(x) \in \mathcal{V}$. But \mathcal{V} is sequentially open, so if $f(a_n) \to f(x)$, then there is an $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with n > N we have $f(a_n) \in \mathcal{V}$. But then for all n > N, $a_n \in f^{-1}[\mathcal{V}]$, a contradiction. So $f^{-1}[\mathcal{V}]$ is sequentially open. \Box **Theorem 1.11.** If (X, τ_X) is a sequential topological space, if (Y, τ_Y) is a topological space, and if $f : X \to Y$ is a homeomorphism, then (Y, τ_Y) is sequential.

Proof. Let $\mathcal{V} \subseteq Y$ be sequentially open. Since f is a homeomorphism, f is continuous, so $f^{-1}[\mathcal{V}]$ is sequentially open. But (X, τ_X) is sequential, so if $f^{-1}[\mathcal{V}]$ is sequentially open, then it is open. But since f is a homeomorphism, it is an open mapping, meaning $f[f^{-1}[\mathcal{V}]] \in \tau_Y$. But f is bijective, so $f[f^{-1}[\mathcal{V}]] = \mathcal{V}$. That is, \mathcal{V} is open, and (Y, τ_Y) is sequential. \Box

Theorem 1.12. If (X, τ_X) is a second-countable topological space, if (Y, τ_Y) is a topological space, and if $f : X \to Y$ is a homeomorphism, then (Y, τ_Y) is second-countable.

Proof. Since (X, τ_X) is second-countable, there is a countable basis \mathcal{B} . Define $\tilde{\mathcal{B}}$ by:

$$\hat{\mathcal{B}} = \{ f[\mathcal{U}] \mid \mathcal{U} \in \mathcal{B} \}$$
(5)

But f is a homeomorphism, so it is an open mapping, meaning for all $\mathcal{U} \in \tau_X$, $f[\mathcal{U}]$ is open, so $\tilde{\mathcal{B}} \subseteq \tau_Y$. Moreover since \mathcal{B} is countable, so is $\tilde{\mathcal{B}}$. Let's show $\tilde{\mathcal{B}}$ is a basis. Given an open set $\mathcal{V} \in \tau_Y$, let $\mathcal{U} = f^{-1}[\mathcal{V}]$. Then $\mathcal{U} \in \tau_X$ since fis continuous, and since \mathcal{B} is a basis there is some $\mathcal{O} \subseteq \mathcal{B}$ such that $\bigcup \mathcal{O} = \mathcal{U}$. Define $\tilde{\mathcal{O}}$ via:

$$\tilde{\mathcal{O}} = \{ f[\mathcal{W}] \mid \mathcal{W} \in \mathcal{O} \}$$
(6)

Then $\tilde{\mathcal{O}} \subseteq \tilde{\mathcal{B}}$, by the definition of $\tilde{\mathcal{B}}$, and since f is a bijection we may conclude that $\bigcup \tilde{\mathcal{O}} = f[\mathcal{U}] = \mathcal{V}$. Hence $\tilde{\mathcal{B}}$ is a countable basis for τ_Y .

Similar to open mappings, one often studies *closed mappings*. Closed mappings arise quite frequently in functional analysis and geometry.

Definition 1.3 (Closed Mappings) A closed mapping from a topological space (X, τ_X) to a topological space (Y, τ_Y) is a function $f : X \to Y$ such that for every closed $\mathcal{C} \subseteq X$ it is true that $f[\mathcal{C}] \subseteq Y$ is closed.

Example 1.7 The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is closed but not open.

Example 1.8 Give $X = Y = \mathbb{R}$, $\tau_X = \{\emptyset, \mathbb{R}\}$, and $\tau_Y = \mathcal{P}(\mathbb{R})$, the identity function f(x) = x is closed (and open) but *not* continuous.

Open mappings, closed mappings, and continuous functions are three distinct notions.

Theorem 1.13. If (X, τ_X) and (Y, τ_Y) are topological spaces, and if $f : X \to Y$ is a bijective open mapping, then it is a closed mapping.

Proof. Let $\mathcal{C} \subseteq X$ be closed. Then $X \setminus \mathcal{C}$ is open. But then:

$$f[\mathcal{C}] = f[X \setminus (X \setminus \mathcal{C})] \tag{7}$$

But f is bijective, so:

$$f[X \setminus (X \setminus \mathcal{C})] = f[X] \setminus f[X \setminus \mathcal{C}]$$
(8)

But f is an open mapping, so $f[X \setminus C]$ is open. But f is bijective, so f[X] = Y, and therefore $f[X] \setminus f[X \setminus C]$ is the complement of an open set, which is therefore closed. Thus, f is a closed mapping.

Without bijectivity, this statement fails. The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is a continuous closed mapping that is *not* an open mapping. The reason being that f is not bijective.

Homeomorphisms can also be described via closed mappings.

Theorem 1.14. If (X, τ_X) and (Y, τ_Y) are topological spaces, and if $f : X \to Y$ is a function, then f is a homeomorphism if and only if f is continuous, bijective, and a closed mapping.

Proof. f is a homeomorphism if and only if f is continuous, bijective, and open. If f is bijective, then f is open if and only if f is closed, so f is a homeomorphism if and only if f is continuous, bijective, and a closed mapping.

2 Subspaces

In the study of metric spaces, given such a space (X, d) and a subset $A \subseteq X$, we could restrict the metric $d: X \times X \to \mathbb{R}$ to $d_A: A \times A \to \mathbb{R}$, making (A, d_A) a metric space. This gave us a metric topology on A, and hence allowed us to think of A as a topological space, with the topology stemming from the metric topology on A. We then proved that a subset \mathcal{U} of A is open with respect to this subspace topology if and only if there is an open subset $\mathcal{V} \subseteq X$ (that is open with respect to the metric topology on X) such that $\mathcal{U} = A \cap \mathcal{V}$. In the general topological setting we lack a metric, but this theorem allows us to define subspaces solely in terms of open sets.

Definition 2.1 (Subspace Topology) The subspace topology of a subset $A \subseteq X$ with respect to a topological space (X, τ) is the set τ_A defined by:

$$\tau_A = \{ \mathcal{U} \subseteq A \mid \text{there exists } \mathcal{V} \in \tau \text{ such that } \mathcal{U} = A \cap \mathcal{V} \}$$
(9)

I am calling this a topology, but *proof by definition* is generally a bad practice. Let's prove the subspace topology is indeed a topology on A.

Theorem 2.1. If (X, τ) is a topological space, if $A \subseteq X$, and if τ_A is the subspace topology on A, then τ_A is a topology on A.

Proof. We must prove the four properties of a topology. First, $\emptyset \in \tau_A$ since $\emptyset \in \tau$ and $\emptyset = \emptyset \cap A$. Next, $A \in \tau_A$ since $X \in \tau$ and since $A \subseteq X$ we have

 $A = A \cap X$. If $\mathcal{U}, \mathcal{V} \in \tau_A$ then there exists $\tilde{\mathcal{U}}, \tilde{\mathcal{V}} \in \tau$ such that $\mathcal{U} = A \cap \tilde{\mathcal{U}}$ and $\mathcal{V} = A \cap \tilde{\mathcal{V}}$. But then:

$$\mathcal{U} \cap \mathcal{V} = \left(A \cap \tilde{\mathcal{U}}\right) \cap \left(A \cap \tilde{\mathcal{V}}\right) = A \cap \left(\tilde{\mathcal{U}} \cap \tilde{\mathcal{V}}\right) \tag{10}$$

but τ is a topology, so if $\tilde{\mathcal{U}}, \tilde{\mathcal{V}} \in \tau$, then $\tilde{\mathcal{U}} \cap \tilde{\mathcal{V}} \in \tau$. Therefore, $\mathcal{U} \cap \mathcal{V} \in \tau_A$. Lastly, if $\mathcal{O} \subseteq \tau_A$, then for all $\mathcal{U} \in \mathcal{O}$ there is a $\tilde{\mathcal{U}} \in \tau$ such that $\mathcal{U} = A \cap \tilde{\mathcal{U}}$. Let $\tilde{\mathcal{O}}$ be the collection of all such $\tilde{\mathcal{U}}$ for all $\mathcal{U} \in \mathcal{O}$. Then:

$$\bigcup \mathcal{O} = \bigcup_{\mathcal{U} \in \mathcal{O}} \mathcal{U} \tag{11}$$

$$=\bigcup_{\tilde{\mathcal{U}}\in\tilde{\mathcal{O}}}\left(A\cap\tilde{\mathcal{U}}\right)\tag{12}$$

$$= A \cap \bigcup_{\tilde{\mathcal{U}} \in \tilde{\mathcal{O}}} \tilde{\mathcal{U}}$$
(13)

$$=A\cap\bigcup\tilde{\mathcal{O}}\tag{14}$$

But $\tilde{\mathcal{O}} \subseteq \tau$ and τ is a topology, so $\bigcup \tilde{\mathcal{O}} \in \tau$, and hence $\bigcup \mathcal{O} \in \tau_A$. That is, τ_A is a topology on A.

Example 2.1 The familiar examples of topological subspaces are just metric subspaces. The circle \mathbb{S}^1 is a subspace of \mathbb{R}^2 . The closed interval $[a, b] \subseteq \mathbb{R}$ and the open interval $(a, b) \subseteq \mathbb{R}$ are subspaces of \mathbb{R} with their respective subspace topologies. The unit sphere \mathbb{S}^2 lives in \mathbb{R}^3 as a subspace as well.

Definition 2.2 (Inclusion Map) The inclusion map of a subset $A \subseteq X$ into the set X is the function $\iota : A \to X$ defined by $\iota(x) = x$.

Theorem 2.2. If (X, τ) is a topological space, if $A \subseteq X$, if τ_A is the subspace topology on A, and if $\iota : A \to X$ is the inclusion map, then ι is continuous.

Proof. Let $\mathcal{V} \in \tau$. Then by the definition of pre-image, $\iota^{-1}[\mathcal{V}]$ is the set of all $x \in A$ such that $\iota(x) \in \mathcal{V}$. But $\iota(x) = x$, so $\iota^{-1}[\mathcal{V}]$ is the set of all $x \in A$ such that $x \in \mathcal{V}$. That is, the set of all elements in $\mathcal{V} \cap A$. But $\mathcal{V} \cap A$ is open in A since \mathcal{V} is open in X. Thus, ι is continuous.

Theorem 2.3. If (X, τ) is a topological space, and if τ'_A is a topology on A such that the inclusion map $\iota : A \to X$ is continuous, then $\tau_A \subseteq \tau'_A$ where τ_A is the subspace topology.

Proof. Let $\mathcal{U} \in \tau_A$. Since τ_A is the subspace topology, there is a $\mathcal{V} \in \tau$ such that $\mathcal{U} = A \cap \mathcal{V}$. But then $\iota^{-1}[\mathcal{V}] = \mathcal{U}$. Since ι is continuous with respect to τ'_A and τ it must be true that $\mathcal{U} \in \tau'_A$. Hence, $\tau_A \subseteq \tau'_A$.

The subspace topology is the *smallest* topology that makes the inclusion map continuous. This is a way of defining the subspace topology altogether, the intersection of all topologies on A that make ι continuous.

This idea of defining a topology in terms of a function that you want to be continuous is common. There are two directions. If we have a topological space (X, τ) , a set Y, and a function $f: X \to Y$, then the *final topology* on Y with respect to f is the largest topology τ_f that makes f continuous. If X is a set, (Y, τ) is a topological space, and $f: X \to Y$ is a function, then the *initial* topology is the smallest topology τ_f on X that makes f continuous.

Definition 2.3 (Final Topology) The final topology on a set Y with respect to a topological space (X, τ) and a function $f: X \to Y$ is the set τ_f defined by:

$$\tau_f = \{ \mathcal{V} \subseteq Y \mid f^{-1}[\mathcal{V}] \in \tau \}$$
(15)

That is, the set of all subsets of Y whose pre-image is open in X.

Again, avoiding proof by definition, the final topology is a topology.

Theorem 2.4. If (X, τ) is a topological space, if Y is a set, if $f : X \to Y$ is a function, and if τ_f is the final topology, then τ_f is a topology on Y.

Proof. First, $\emptyset \in \tau_f$ since $f^{-1}[\emptyset] = \emptyset$ and $\emptyset \in \tau$. Next, $Y \in \tau_f$ since $f^{-1}[Y] = X$ and $X \in \tau$, since τ is a topology. Suppose $\mathcal{U}, \mathcal{V} \in \tau_f$. Then:

$$f^{-1}[\mathcal{U} \cap \mathcal{V}] = f^{-1}[\mathcal{U}] \cap f^{-1}[\mathcal{V}]$$
(16)

But if $\mathcal{U}, \mathcal{V} \in \tau_f$, then $f^{-1}[\mathcal{U}] \in \tau$ and $f^{-1}[\mathcal{V}] \in \tau$. But τ is a topology on X, so $f^{-1}[\mathcal{U}] \cap f^{-1}[\mathcal{V}] \in \tau$. Hence, $\mathcal{U} \cap \mathcal{V} \in \tau_f$. Lastly, let $\mathcal{O} \subseteq \tau_f$. Then for all $\mathcal{U} \in \mathcal{O}$ it is true that $f^{-1}[\mathcal{U}] \in \tau$. But then:

$$f^{-1}\left[\bigcup\mathcal{O}\right] = f^{-1}\left[\bigcup_{\mathcal{U}\in\mathcal{O}}\mathcal{U}\right] \tag{17}$$

$$=\bigcup_{\mathcal{U}\in\mathcal{O}}f^{-1}[\mathcal{U}]\tag{18}$$

But τ is a topology, so this final union is an element of τ . Hence, $\bigcup \mathcal{O} \in \tau_f$ and τ_f is a topology.

Theorem 2.5. If (X, τ) is a topological space, if Y is a set, and if $f : X \to Y$ is a function, then f is continuous with respect to τ and the final topology τ_f .

Proof. Given $\mathcal{V} \in \tau_f$, by definition of the final topology we have $f^{-1}[\mathcal{V}] \in \tau$, so f is continuous.

Theorem 2.6. If (X, τ) is a topological space, if Y is a set, if $f : X \to Y$ is a function, if τ_f is the final topology, and if τ_Y is a topology such that f is continuous with respect to τ and τ_Y , then $\tau_Y \subseteq \tau_f$.

Proof. For let $\mathcal{V} \in \tau_Y$. Since f is continuous with respect to τ and τ_Y it is true that $f^{-1}[\mathcal{V}] \in \tau$. But τ_f is the final topology which is the set of all such $\mathcal{U} \subseteq Y$ such that $f^{-1}[\mathcal{U}] \in \tau$, and therefore $\mathcal{V} \in \tau_f$. That is, $\tau_Y \subseteq \tau_f$.

This is what was meant by the claim that the final topology is the *largest* topology that makes f continuous.

Definition 2.4 (Initial Topology) The initial topology on a set X with respect to a topological space (Y, τ) and a function $f : X \to Y$ is the set τ_f defined by:

$$\tau_f = \{ f^{-1}[\mathcal{V}] \mid \mathcal{V} \in \tau \}$$
(19)

That is, the set of all pre-images of open subsets of Y.

The initial topology is, in fact, a topology.

Theorem 2.7. If X is a set, if (Y, τ) is a topological space, and if $f : X \to Y$ is a function, then the initial topology τ_f is a topology on X.

Proof. We have that $\emptyset = f^{-1}[\emptyset]$, so $\emptyset \in \tau_f$. We also have $X = f^{-1}[Y]$, so $X \in \tau_f$. If $\mathcal{U}, \mathcal{V} \in \tau_f$, then there are $\tilde{\mathcal{U}}, \tilde{\mathcal{V}} \in \tau$ such that $\mathcal{U} = f^{-1}[\tilde{\mathcal{U}}]$ and $\mathcal{V} = f^{-1}[\tilde{\mathcal{V}}]$. But then:

$$\mathcal{U} \cap \mathcal{V} = f^{-1}[\tilde{\mathcal{U}}] \cap f^{-1}[\tilde{\mathcal{V}}] = f^{-1}[\tilde{\mathcal{U}} \cap \tilde{\mathcal{V}}]$$
(20)

But τ is a topology, so $\tilde{\mathcal{U}} \cap \tilde{\mathcal{V}} \in \tau$, and hence $\mathcal{U} \cap \mathcal{V} \in \tau_f$. Lastly, if $\mathcal{O} \subseteq \tau_f$, then for all $\mathcal{U} \in \mathcal{O}$ there is a $\tilde{\mathcal{U}} \in \tau$ such that $\mathcal{U} = f^{-1}[\tilde{\mathcal{U}}]$. Let $\tilde{\mathcal{O}} \subseteq \tau$ be the set of all such $\tilde{\mathcal{U}}$. Then:

$$\bigcup \mathcal{O} = \bigcup_{\mathcal{U} \in \mathcal{O}} \mathcal{U} \tag{21}$$

$$=\bigcup_{\tilde{\mathcal{U}}\in\tilde{\mathcal{O}}}f^{-1}[\tilde{\mathcal{U}}]\tag{22}$$

$$= f^{-1} \Big[\bigcup_{\tilde{\mathcal{U}} \in \tilde{\mathcal{O}}} \tilde{\mathcal{U}} \Big]$$
(23)

$$= f^{-1} \left[\bigcup \tilde{\mathcal{O}} \right] \tag{24}$$

But τ is a topology so $\bigcup \tilde{\mathcal{O}} \in \tau$ and therefore $\bigcup \mathcal{O} \in \tau_f$. So τ_f is a topology. \Box

Theorem 2.8. If X is a set, if (Y, τ) is a topological space, if $f : X \to Y$ is a function, and if τ_f is the initial topology, then f is continuous.

Proof. Let $\mathcal{V} \in \tau$. By the definition of the initial topology, $f^{-1}[\mathcal{V}] \in \tau_f$, so f is continuous.

Theorem 2.9. If X is a set, if (Y, τ) is a topological space, if $f : X \to Y$ is a function, if τ_f is the initial topology with respect of f and (Y, τ) , and if τ_X is a topology such that f is continuous with respect to τ_X and τ , then $\tau_f \subseteq \tau_X$.

Proof. Let $\mathcal{U} \in \tau_f$. Then by the definition of the initial topology, there is a $\tilde{\mathcal{U}} \in \tau$ such that $f^{-1}[\tilde{\mathcal{U}}] = \mathcal{U}$. But f is continuous with respect to τ_X and τ , so if $\tilde{\mathcal{U}} \in \tau$, then $f^{-1}[\tilde{\mathcal{U}}] \in \tau_X$. That is, $\mathcal{U} \in \tau_X$ and therefore $\tau_f \subseteq \tau_X$.

The initial topology is therefore the *smallest* topology that makes f continuous.

Theorem 2.10. If (X, τ) is a topological space, if $A \subseteq X$, if $\iota : A \to X$ is the inclusion mapping, and if τ_{ι} is the initial topology with respect to (X, τ) and ι , then $\tau_{\iota} = \tau_A$ where τ_A is the subspace topology.

Proof. τ_A is a topology that makes ι continuous, and hence by the previous theorem, $\tau_{\iota} \subseteq \tau_A$. Suppose $\mathcal{U} \in \tau_A$. Then there is an open set $\mathcal{V} \in \tau$ such that $\mathcal{U} = \mathcal{V} \cap A$. By the definition of the inclusion mapping, $\iota^{-1}[\mathcal{V}] = \mathcal{V} \cap A$, so $\iota^{-1}[\mathcal{V}] = \mathcal{U}$ and therefore $\mathcal{U} \in \tau_{\iota}$. That is, $\tau_A \subseteq \tau_{\iota}$. Therefore, $\tau_A = \tau_{\iota}$.

A few pages ago it was stated that homeomorphisms are just relabellings of spaces. With the initial and final topology we can make this precise.

Theorem 2.11. If (X, τ) is a topological space, if Y is a set, and if $f : X \to Y$ is a bijection, then there is a unique topology τ_Y on Y such that f is a homeomorphism.

Proof. Let τ_Y be the final topology from f. This makes f continuous. Given any topology τ'_Y that makes f continuous, since τ_Y is the final topology, we have $\tau'_Y \subseteq \tau_Y$. But then τ_Y is also the initial topology with respect to f^{-1} , making f^{-1} continuous. Then given any topology τ''_Y that makes f^{-1} continuous, we have $\tau_Y \subseteq \tau''_Y$. Hence any topology τ''_Y that makes f and f^{-1} continuous must have $\tau_Y \subseteq \tau''_Y$ and $\tau''_Y \subseteq \tau_Y$, so $\tau_Y = \tau''_Y$. That is, τ_Y is the unique topology that makes f a homeomorphism.

The subspace topology preserves many (but not all) properties of the ambient space.

Theorem 2.12. If (X, τ) is a Hausdorff topological space, if $A \subseteq X$, and if τ_A is the subspace topology, then (A, τ_A) is a Hausdorff topological space.

Proof. Let $x, y \in A$ with $x \neq y$. Since $A \subseteq X$ we have $x, y \in X$. But $x \neq y$ and (X, τ) is Hausdorff, so there exist $\mathcal{U}, \mathcal{V} \in \tau$ such that $x \in \mathcal{U}, y \in \mathcal{V}$, and $\mathcal{U} \cap \mathcal{V} = \emptyset$. Let $\tilde{\mathcal{U}} = A \cap \mathcal{U}$ and $\tilde{\mathcal{V}} = A \cap \mathcal{V}$. Since $x \in A$ and $x \in \mathcal{U}$, we have $x \in A \cap \mathcal{U}$. Since $y \in A$ and $y \in \mathcal{V}$, it is also true that $y \in A \cap \mathcal{V}$. So $x \in \tilde{\mathcal{U}}$ and $y \in \tilde{\mathcal{V}}$. But also:

$$\tilde{\mathcal{U}} \cap \tilde{\mathcal{V}} = (A \cap \mathcal{U}) \cap (A \cap \mathcal{V}) = A \cap (\mathcal{U} \cap \mathcal{V}) = A \cap \emptyset = \emptyset$$
(25)

so $\tilde{\mathcal{U}}$ and $\tilde{\mathcal{V}}$ are open sets such that $x \in \tilde{\mathcal{U}}, y \in \tilde{\mathcal{V}}$, and $\tilde{\mathcal{U}} \cap \tilde{\mathcal{V}} = \emptyset$. That is, (A, τ_A) is Hausdorff.

Theorem 2.13. If (X, τ) is a second-countable topological space, if $A \subseteq X$, and if τ_A is the subspace topology, then (A, τ_A) is second-countable.

Proof. Since (X, τ) is second-countable, there is a countable basis $\mathcal{B} \subseteq \tau$. That is, there is a surjection $\mathcal{U} : \mathbb{N} \to \mathcal{B}$ so that we may list the elements as:

$$\mathcal{B} = \{\mathcal{U}_0, \dots, \mathcal{U}_n, \dots\}$$
(26)

Let $\tilde{\mathcal{B}} \subseteq \tau_A$ be defined by:

$$\tilde{\mathcal{B}} = \{ A \cap \mathcal{U}_n \mid n \in \mathbb{N} \}$$
(27)

 \mathcal{B} is countable since the elements are indexed by the natural numbers. We now must show that $\tilde{\mathcal{B}}$ is a basis for (A, τ_A) . That is, given $\tilde{\mathcal{U}} \in \tau_A$ we must find $\tilde{\mathcal{O}} \subseteq \tilde{B}$ such that $\bigcup \tilde{\mathcal{O}} = \tilde{\mathcal{U}}$. Since $\tilde{\mathcal{U}} \in \tau_A$, by definition of the subspace topology there is some $\mathcal{V} \in \tau$ such that $\tilde{\mathcal{U}} = A \cap \mathcal{V}$. But \mathcal{B} is a basis for τ so there is $\mathcal{O} \subseteq \mathcal{B}$ such that $\bigcup \mathcal{O} = \mathcal{V}$. Define $\tilde{\mathcal{O}}$ via:

$$\hat{\mathcal{O}} = \{ A \cap \mathcal{W} \mid \mathcal{W} \in \mathcal{O} \}$$
(28)

Then by definition of $\tilde{\mathcal{B}}$ we have $\tilde{\mathcal{O}} \subseteq \tilde{\mathcal{B}}$. Since the elements $\mathcal{W} \in \mathcal{O}$ are subsets of \mathcal{V} , and since $\tilde{\mathcal{U}} = A \cap \mathcal{V}$, we have $A \cap \mathcal{W} \subseteq \tilde{\mathcal{U}}$ for all $\mathcal{W} \in \mathcal{O}$, and hence $\bigcup \tilde{\mathcal{O}} \subseteq \tilde{\mathcal{U}}$. Reversing this, let $x \in \tilde{\mathcal{U}}$. Then $x \in A \cap \mathcal{V}$, and hence $x \in \mathcal{V}$. But $\bigcup \mathcal{O} = \mathcal{V}$ so there is some $\mathcal{W} \in \mathcal{O}$ such that $x \in \mathcal{W}$. But then $x \in A$ and $x \in \mathcal{W}$, and hence $x \in A \cap \mathcal{W}$. But $A \cap \mathcal{W} \in \tilde{\mathcal{O}}$, so $x \in \bigcup \tilde{\mathcal{O}}$. Hence, $\tilde{\mathcal{U}} \subseteq \bigcup \tilde{\mathcal{O}}$, meaning $\tilde{\mathcal{U}} = \bigcup \tilde{\mathcal{O}}$. So $\tilde{\mathcal{B}}$ is a countable basis of τ_A and (A, τ_A) is second-countable. \Box

Theorem 2.14. If (X, τ) is a first-countable topological space, if $A \subseteq X$, and if τ_A is the subspace topology, then (A, τ_A) is a first-countable topological space.

Proof. Let $x \in A$. Since $A \subseteq X$ we have that $x \in X$. But (X, τ) is first countable, so there is a countable neighborhood basis \mathcal{B} of x. Since \mathcal{B} is countable, there is a surjection $\mathcal{U} : \mathbb{N} \to \mathcal{B}$ so that we may write the elements as:

$$\mathcal{B} = \{\mathcal{U}_0, \dots, \mathcal{U}_n, \dots\}$$
(29)

Define $\tilde{\mathcal{B}}$ as:

$$\mathcal{B} = \{ A \cap \mathcal{U}_n \mid n \in \mathbb{N} \}$$
(30)

The set $\hat{\mathcal{B}}$ is countable. We must now show it is a neighborhood basis of x. First, for all $\mathcal{V} \in \tilde{\mathcal{B}}$ we have $x \in \mathcal{V}$. For if $\mathcal{V} \in \tilde{\mathcal{B}}$ we can write $\mathcal{V} = A \cap \mathcal{U}_n$ for some $n \in \mathbb{N}$. But \mathcal{B} is a neighborhood basis for x and $\mathcal{U}_n \in \mathcal{B}$, so $x \in \mathcal{U}_n$. But $x \in A$, and hence $x \in A \cap \mathcal{U}_n$. So every element of $\tilde{\mathcal{B}}$ contains x. If $\tilde{\mathcal{V}} \in \tau_A$ is such that $x \in \tilde{\mathcal{V}}$, then there is a $\mathcal{V} \in \tau$ such that $\tilde{\mathcal{V}} = A \cap \mathcal{V}$. But \mathcal{B} is a neighborhood basis of x, so there is a $\mathcal{U}_n \in \mathcal{B}$ such that $x \in \mathcal{U}_n$ and $\mathcal{U}_n \subseteq \mathcal{V}$. But then $x \in A \cap \mathcal{U}_n$ and $A \cap \mathcal{U}_n \subseteq A \cap \mathcal{V} = \tilde{\mathcal{V}}$. But $A \cap \mathcal{U}_n$ is an element of $\tilde{\mathcal{B}}$, showing us that (A, τ_A) is first-countable.

Subspaces of sequential spaces do **not** need to be sequential. Spaces where every subspace is sequential are given a name.

Definition 2.5 (Fréchet-Urysohn Topological Space) A Fréchet-Urysohn topological space is a topological space (X, τ) such that for all $A \subseteq X$ it is true that (A, τ_A) is a sequential topological space where τ_A is the subspace topology.

Theorem 2.15. If (X, τ) is a first-countable topological space, then it is a Fréchet-Urysohn topological space.

Proof. Since first-countable spaces are sequential, and every subspace of a first-countable space is first-countable, every subspace of a first-countable space is also sequential, and hence (X, τ) is a Fréchet-Urysohn space.

Theorem 2.16. If (X, τ) is a second-countable topological space, then it is a Fréchet-Urysohn space.

Proof. Since second-countable spaces are first-countable, this follows from the previous theorem. \Box

Theorem 2.17. If (X, τ) is a metrizable topological space, then it is a Fréchet-Urysohn space.

Proof. Since metrizable spaces are first-countable, this follows from a previous theorem. \Box

The easiest space to describe that is sequential but *not* Fréchet-Urysohn requires the product topology, which we'll get to soon enough.

Subspaces give rise to the notion of *topological embeddings*, which are another special type of function commonly studied in topology, analysis, and geometry.

Definition 2.6 (Topological Embedding) A topological embedding of a topological space (X, τ_X) to a topological space (Y, τ_Y) is a function $f: X \to Y$ such that $f: X \to f[X]$ is a homeomorphism between X and f[X] with respect to the subspace topology $\tau_{Y_{f[X]}}$.

Topological embeddings allow us to think of a topological space (X, τ_X) as just a *subspace* of (Y, τ_Y) with the subspace topology.

Theorem 2.18. If (X, τ) is a topological space, if $A \subseteq X$, if τ_A is the subspace topology, and if ι is the inclusion mapping, then $\iota : A \to X$ is a topological embedding.

Proof. The image of A is $\iota[A] = A$. $\iota : A \to \iota[A]$ is then just the identity function $\iota : A \to A$ with $\iota(x) = x$, which is a homeomorphism.