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1 Induced Equivalence Relation

Given a relation R on a set A, it is possible for R to be very dull. It does
not need to be reflexive, symmetric, or transitive. We can always transform R
into a reflexive relation by adding in aRa for all a ∈ A. We can then make it
symmetric by adding bRa for all a, b ∈ A such that aRb. Lastly, we can make it
transitive by enlarging the relation as well. This idea is the induced equivalence
relation from R.

Theorem 1.1. If A is a set, and if R ⊆ P(A×A) is a non-empty set such that
for all R ∈ R it is true that R is an equivalence relation on A, then

⋂R is an
equivalence relation on A.

Proof. Given a ∈ A, since for all R ∈ R it is true that R is an equivalence
relation, we have aRa. Hence, (a, a) ∈ ⋂R. That is, a

(⋂R)a. If a, b ∈ A
are such that (a, b) ∈ ⋂R, then for all R ∈ R we have aRb. But since R is
an equivalence relation this implies bRa. So bRa for all R ∈ R and therefore
(b, a) ∈ ⋂R. Lastly, if a, b, c ∈ A are such that (a, b) ∈ ⋂R and (b, c) ∈ ⋂R,
then for all R ∈ R we have aRb and bRc. But R is an equivalence relation,
so then aRc. But then (a, c) ∈ ⋂R, so

⋂R is transitive. Hence,
⋂R is an

equivalence relation.

Theorem 1.2. If A is a set, if R is a relation on A, and if R is the set of
all equivalence relations R′ on A such that R ⊆ R′, then

⋂R is an equivalence
relation on A such that R ⊆ ⋂R.

Proof. First, R is non-empty since A×A is an equivalence relation on A. It is
the relation that says a is related to b for all a, b ∈ R. That is, the relation that
says everything is related to everything else. But R is a relation on A, so by
definition R ⊆ A × A. Hence R is a non-empty set of equivalence relations on
A, so

⋂R is an equivalence relation on A by the previous theorem. But for all
R′ ∈ R it is true that R ⊆ R′, so R ⊆ ⋂R.

Definition 1.1 (Induced Equivalence Relation) The induced equivalence
relation on a set A by a relation R is the equivalence relation

⋂R where R is
the set of all equivalence relations R′ on A such that R ⊆ R′. �
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Example 1.1 Let A be a set and R = ∅, the empty relation. This relation says
nothing is related, not even a ∈ A is related to itself. The induced equivalence
relation is the diagonal ∆A = { (a, a) | a ∈ A }. The only thing we need to add
to make R an equivalence relation is reflexivity. �

Theorem 1.3. If A is a set, and if R is an equivalence relation on A, then the
induced equivalence relation R′ is equal to R.

Proof. Let R be the set of all equivalence relations R′′ on A such that R ⊆ R′′.
But R is an equivalence relation on A, and R ⊆ R, so R ∈ R. Hence

⋂R ⊆ R.
But also R ⊆ ⋂R. So R =

⋂R. But R′ =
⋂R since R′ is the induced

equivalence relation, so R = R′.

Definition 1.2 (Induced Equivalence Relation by a Subset) The induced
equivalence relation of a subset A ⊆ X of a set X is the induced equivalence
relation RA induced by the relation R on X defined by:

R = { (a, b) ∈ X ×X | a ∈ A and b ∈ A } (1)

That is, the equivalence relation induced by saying that everything in A is
related to everything else in A. �

2 Quotient Topology

Given a set X and an equivalence relation R on X, we may form the quotient
set X/R which is the set of all equivalence classes of X under R. Intuitively,
we are taking points in X and gluing them together in the quotient set. If
X had a topology, it seems like it should be possible to give a topology to the
quotient since gluing things together certainly seems like a topological operation.
This is indeed possible, and quotient spaces are very common in topology since
they provide a plethora of spaces one can ponder and construct. We define
the quotient topology via the quotient map. In set theory, there is a canonical
quotient function q : X → X/R given by q(x) = [x] for all x ∈ X, where
[x] ∈ X/R is the equivalence class of x. This is something like projecting points
x in X to the point in X/R where x was glued to, the equivalence class [x].
This gluing operation should be continuous. We define the quotient topology
on X/R via the final topology on X/R which makes q continuous.

Definition 2.1 (Quotient Topology) The quotient topology on the quotient
set X/R of a set X under an equivalence relation R with respect to a topological
space (X, τ) is the set τX/R defined as the final topology with respect to the
quotient map q : X → X/R defined by q(x) = [x], and with respect to the
topology τ on X. �

Theorem 2.1. If (X, τ) is a topological space, if R is an equivalence relation
on X, and if τX/R is the quotient topology on X/R, then (X/R, τX/R) is a
topological space.
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Proof. The quotient topology is the final topology with respect to (X, τ) and
the quotient map q : X → X/R defined by q(x) = [x]. But the final topology
for any function f : X → X/R with respect to (X, τ) is a topology on X/R, so
in particular τX/R is a topology.

Since τX/R is the final topology with respect to the quotient mapping q, a subset
U ⊆ X/R is open if and only if q−1[U ] is open. Please note continuity alone
is not sufficient enough to say that q−1[U ] being open implies U is open. The
implication goes one way. If U is open, and if q is continuous, then q−1[U ] is
open. For a general continuous function f : X → Y with topologies τX and τY ,
given V ⊆ Y and f−1[V] ∈ τX , it is not necessarily true that we can conclude
that V ∈ τY . Let X = Y = R, and τX = τY = τR, the standard topology
on R. Let f(x) = 1. Since it is a constant function, it is continuous. But
f−1[{ 1 }] = R, which is open, however { 1 } is not open in R. The quotient
map, with the quotient topology, is very special in this regard. U ⊆ X/R is
open if and only if q−1[U ] is open in X. This fact is used constantly in the
proofs of various claims about quotient spaces.

Definition 2.2 (Saturated Subset) A saturated set with respect to a function
f : X → Y between sets X and Y is a set A ⊆ X such that f−1

[
f [A]

]
= A. �

Not every subset is saturated (unless the function is injective). We can always
conclude that A ⊆ f−1

[
f [A]

]
, however.

Theorem 2.2. If X and Y are sets, if f : X → Y , and if A ⊆ X, then
A ⊆ f−1

[
f [A]

]
.

Proof. Given x ∈ A it is true that f(x) ∈ f [A] by the definition of image. But
then x is an element of X such that f(x) ∈ f [A], and hence x ∈ f−1

[
f [A]

]
by

the definition of pre-image. So A ⊆ f−1
[
f [A]

]
.

Theorem 2.3. If X and Y are sets, if f : X → Y is an injective function, and
if A ⊆ X, then A = f−1

[
f [A]

]
.

Proof. We have proven that A ⊆ f−1
[
f [A]

]
. Let’s go the other way. Let

x ∈ f−1
[
f [A]

]
. Then there is a y ∈ f [A] such that f(x) = y. But y ∈ f [A], so

there is an element x0 ∈ A such that f(x0) = y. But f is injective, so x = x0.
Therefore, x ∈ A. That is, f−1

[
f [A]

]
⊆ A, so A = f−1

[
f [A]

]
.

Lacking injectivity, we can make no such conclusion.

Example 2.1 Let X = Y = R, and let A = R≥0. Define f(x) = x2. Then
f−1

[
f [A]

]
= R, but A 6= R. �

Theorem 2.4. If X and Y are sets, if f : X → Y is a function, and if B ⊆ Y ,
then A = f−1[B] is a saturated subset of X.

Proof. We have proven that A ⊆ f−1
[
f [A]

]
. Going the other way, let x ∈

f−1
[
f [A]

]
. Then f(x) ∈ f [A] by the definition of pre-image. But f [A] =
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f
[
f−1[B]

]
by the definition of A. So if f(x) ∈ f [A], then f(x) ∈ f

[
f−1[B]

]
.

But then f(x) ∈ B. But if f(x) ∈ B, then x ∈ f−1[B]. Therefore x ∈ A, so
f−1

[
f [A]

]
⊆ A, and hence f−1

[
f [A]

]
= A. That is, A is saturated.

Theorem 2.5. If (X, τ) is a topological space, if R is an equivalence relation
on X, and if τX/R is the quotient topology, then the quotient map q : X → X/R
is a continuous surjective function such that for all saturated U ∈ τ , it is true
that q[U ] ∈ τX/R.

Proof. Since q is the final topology with respect to (X, τ) and q, q is continuous.
q is also surjective, since given [x] ∈ X/R we have q(x) = [x]. Lastly, if U ∈ τ
is saturated, then q−1

[
q[U ]

]
= U . But then q[U ] is a set in X/R such that the

pre-image is an open subset of X, and since τX/R is the quotient topology, it
must be true that q[U ] is open. Hence the image of a saturated open set is
open.

This theorem motivates the more general idea of a quotient map between dif-
ferent topological spaces.

Definition 2.3 (Quotient Map) A quotient map from a topological space
(X, τX) to a topological space (Y, τY ) is a continuous surjective function f :
X → Y such that for every saturated set U ∈ τX it is true that f [U ] ∈ τY . �

Theorem 2.6. If (X, τX) and (Y, τY ) are topological spaces, if f : X → Y is
a quotient map, then there is an equivalence relation R on X such that (Y, τY )
is homeomorphic to (X/R, τX/R) where τX/R is the quotient topology.

Proof. Let R be the relation on X defined by aRb if and only if f(a) = f(b).
R is an equivalence relation. aRa since f(a) = f(a). R is symmetric since aRb
implies f(a) = f(b), and hence f(b) = f(a), so bRa. Lastly, R is transitive.
If aRb and bRc, then f(a) = f(b) and f(b) = f(c). By the transitivity of
equality, f(a) = f(c) and hence aRc. Define g : X/R → Y via g([a]) = f(a).
This is well-defined. If [a] = [b], then aRb, and hence f(a) = f(b). Thus
g([a]) = f(a) = f(b) = g([b]). We now must prove that g is a homeomorphism.
First, it is bijective. It is injective since if g([a]) = g([b]), then f(a) = f(b),
and hence aRb, so [a] = [b]. It is surjective since given y ∈ Y , since f is a
quotient map it is surjective, so there is an x ∈ X such that f(x) = y. But then
g([x]) = f(x) = y, so g is surjective. Therefore, g is bijective. Next, to prove
g is a continuous open map. Given V ∈ τY , g−1[V] is the set of all [x] ∈ X/R
such that g([x]) ∈ V. But g([x]) ∈ V if and only if f(x) ∈ V, and f(x) ∈ V if
and only if x ∈ f−1[V]. But f is a quotient map, so it is continuous, and hence
f−1[V] is open. But f−1[V] = q−1

[
g−1[V]

]
where q : X → X/R is the quotient

map q(x) = [x]. But τX/R is the quotient topology, so if q−1
[
g−1[V]

]
is open,

then g−1[V] is open, so g is continuous. Lastly, g is an open mapping. Given
U ∈ τX/R, q−1[U ] is a saturated open subset of X. But f is a quotient map, so

then f
[
q−1[U ]

]
is open. But f

[
q−1[U ]

]
= g[U ], so g[U ] is open. Therefore g is a

homeomorphism.
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Figure 1: Quotient of an Interval to a Circle

Quotient spaces (Y, τY ) are just topological spaces that can be thought of as quo-
tients by some equivalence relation of another topological (X, τX). This mimics
how topological embeddings give us topological spaces that can be thought of
as subspaces of some other topological space.

3 Quotient of a Subspace

The most common way to create a quotient of a topological space (X, τ) is to
take a subset A ⊆ X, give the equivalence relation RA on X that is induced by
A, and consider X/RA with the quotient topology τX/RA

. The notation for this
is quite unfortunate, we write X/A and τX/A. The reason this is unfortunate
is because we now have competing notation with algebraists. Given R with the
standard topology, and Z ⊆ R, algebraists will tell you that R/Z is a circle.
Topologists will tell you this is actually infinitely many circles. The reason for
the competing notions is that, to algebraists, R is a group, Z ⊆ R is a subgroup,
and R/Z is a quotient group, which is indeed the same thing as a circle, as far
as groups are concerned. For topologists, R is a topological space, Z ⊆ R is a
topological subspace, and R/Z is a quotient space, which we will see later looks
like infinitely many circles all touching at one point.

Example 3.1 Let X = [0, 1], τX the subspace topology from R, and A =
{ 0, 1 }. The quotient space X/A is formed by taking the endpoints of X and
gluing them together. The result is a circle. A visual for is given in Fig. 1.
Note, the quotient space is not exactly a circle, it is just homeomorphic to it.
The points in S1 are points in the plane R2. Points in X/A are equivalence
classes of X, which means points in X/A are subsets [x] ⊆ X for x ∈ X. The
homeomorphism goes as follows. Define:

f([t]) =
(

cos(2πt), sin(2πt)
)

(2)

[0] = [1] since the equivalence relation glues 0 to 1, meaning this function is
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Figure 2: Quotient of a Disk to a Sphere

a

a

bb

Figure 3: Square Representation of a Torus

indeed bijective, and it is also continuous with a continuous inverse. �

Example 3.2 Let X ⊆ R2 be the closed unit disk:

X = {x ∈ R2 | ||x||2 ≤ 1 } (3)

This includes the boundary, the points that are precisely 1 unit away from the
origin. Let A ⊆ X be the unit circle, A = S1:

A = {x ∈ R2 | ||x||2 = 1 } (4)

Equip both X and A with the subspace topologies from the Euclidean plane.
The quotient space X/A is a sphere. We are taking the points on the boundary
and gluing them to a single point. This is shown in Fig. 2. Again, X/A is not
exactly the sphere in R3, it is just homeomorphic to it. The sphere contains
points in R3 whereas X/A contains subsets of X, the equivalence classes of X
under the relation that glues A to a single point. Topologically, however, there
is little point in differentiating between X/A and the sphere S2 since they are
homeomorphic. �

Consider the square [0, 1] × [0, 1]. Identity (x, 0) with (x, 1) for all x ∈ [0, 1],
and also (0, y) with (1, y) for all y ∈ [0, 1]. This identification is shown in
Fig. 3. The quotient of the square under this identication is a torus, which is a
hollow donut.
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Figure 4: Quotient of a Square to a Torus
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Figure 5: Pac-Man’s World

By gluing the top edge to the bottom edge we obtain a cylinder. The left and
right edges become circles in the process, and we now have to glue these circles
together with matching orientations. By doing this we obtain a torus. This is
shown in Fig. 4.

The torus is the world the Pac-Man lives on (See Fig. 5). Does Pac-Man see
his own back? We can tile the plane with squares, so let’s take a copy of Fig. 3
and use it to cover the page, ensuring that the orientation of the arrows match
when we glue adjacent squares together. The result is Fig. 6. In this figure
the two Pac-Men are given different colors so we can differentiate them. This
idea of tiling the plane with the square representation of the torus will be very
important later. It shows that the plane is the universal cover of the torus, a
concept that is fundamental to algebraic topology and the theory of manifolds.

Now, let’s do a different identification on the square. Let’s identify (0, y) with
(1, 1− y). That is, we are taking the square and gluing the left and right sides
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Figure 6: Tiling the Plane with Pac-Man’s World
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Figure 7: Square Representation of the Möbius Strip

Figure 8: A Möbius Strip

together, but with a twist. The result is the Möbius strip, this construction is
shown in Fig. 7. A 3D drawing is shown in Fig. 8.

And now let’s go nuts. Let identify (x, 0) with (1 − x, 1), like in the Möbius
band, but also (0, y) with (1, y), like in the torus. The result is something that’s
like a torus, but also like a Möbius band. The square representation is given in
Fig. 9. This object is called the Klein bottle.

Let’s imagine Pac-Man lived on a Klein bottle, instead of a torus. This is
shown in Fig. 10. We know that Pac-Man will see his back due to the torus-like
identification made with the left and right edges, but will Pac-Man also see his
face? If we play the same game as before, taking copies of Fig. 10 and attach
them to tile the plane in a consistent manner, we can see that Pac-Man does
indeed see this face. This is shown in Fig. 11.
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Figure 9: Square Representation of a Klein Bottle
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Figure 10: Pac-Man in a Klein Bottle
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Figure 11: Tiling the Plane with the Klein Bottle
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Figure 12: The Klein Bottle in R3

This shows the plane is also the universal cover of the Klein bottle as well. This
idea actually allows us to immerse (which is a weaker notion than embed) the
Klein bottle into R3. It is impossible to embed the Klein bottle into R3 since
you will need the object to pass through itself, which is not an embedding. This
is given in Fig. 12.

Let’s end with the real projective plane. This is denoted RP2. Take the square
and identify (0, y) with (1, 1 − y), and (x, 0) with (1 − x, 1). That is, do the
Möbius twist for both top and bottom, and left and right. This is shown in
Fig. 13. Can we tile the plane with this object? Let’s try. Fig. 14 seems to
do it, but there’s a cheat. We are not just using copies of Fig. 13, rather we
are using copies of Fig. 13 and its mirror. This is why the horizontal arrows
converge to the center, and the vertical arrows diverge. Using only copies of
Fig. 13 (no mirrors), it is not possible to tile the plane in a way that the arrows
match. The reason being that the real projective plane does not have the plane
as its universal cover. The universal cover of RP2 is S2, the sphere. This can be
described using a quotient. On S2, define xRy if and only if y = −x or y = x.
This is the antepodal identification. We are gluing opposite ends of the sphere
together. For example, the north pole is glued to the south pole. The result of
the quotient S2/R is the real projective plane.
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Figure 13: Square Representation of RP2
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Figure 14: Fake Tiling of the Plane with the RP2 Square
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Figure 15: The Cross-Cap RP2

Like the Klein bottle, it is not possible to embed RP2 into R3. We can draw RP2

if we allow the object to intersect itself. There are many ways to do this, but
two nice drawings are given by the so-called cross-cap and the Bryant-Kusner
parameterization. These are given in Figs. 15 and 16, respectively.

4 Properties of Quotients

Most topological properties are not preserved by quotients. For example, just
because (X, τ) is Hausdorff, doesn’t mean all of it’s quotient spaces are. The
easiest example to describe is the bug-eyed line, also known as the line with two
origins. Take X ⊆ R2 to be:

X = { (x, y) ∈ R2 | y = −1 or y = 1 } (5)

Equip this with the subspace topology from R2. Define R to be the equivalence
relation induced by identifying (x, −1) with (x, 1) for all x 6= 0. Do not identify
(0, −1) and (0, 1) together, keep them separate. Consider the quotient space
X/R. First note that since X is a subspace of R2, which is Hausdorff, (X, τX)
is Hausdorff as well (τX being the subspace topology). The visual is given in
Fig. 17. The top part is X, the center is X/R, and the bottom is how we
intuitively try to think of X/R, though realizing the middle picture is slightly
more accurate. What do open subsets around the two origins look like? A
subset of the bug-eyed line is open if and only if the pre-image of the set is an
open subset of the subspace X ⊆ R2 via the quotient map q : X → X/R. Using
this we see that open sets can look like open intervals. In particular, if we look
at the top origin, we can put an open interval around it that does not include
the bottom origin. Similarly we can put an open interval around the bottom
interval that does not include the top. This is done in Fig. 18. The open sets
U and V in this figure help show that the bug-eyed line is a Fréchet topological
space, but it is not Hausdorff. Any open set U that contains the top origin
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Figure 16: Bryan-Kusner Parameterization of RP2

Figure 17: The Bug-Eyed Line
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U

V

U ∩ V

Figure 18: Open Subsets in the Bug-Eyed Line

must overlap with any open set V that contains the bottom origin (again, see
Fig. 18). Quotients of Hausdorff spaces do not need to be Hausdorff.

Quotients do no need to preserve first or second-countable, either. Give R the
standard topology, and consider the quotient space R/Z. This is not the same
as the quotient group in abstract algebra, where R/Z is just a circle, this is
a topological quotient. We are taking all of the integers and gluing them to
0. The result, intuitively, is infinitely many circles that are all touching at
0. R is second-countable, and hence first-countable, but R/Z is neither. To
show this, I’ll demonstrate that [0], the equivalence class of 0, has no countable
neighborhood basis. For let τR be the standard topology and τR/Z the quotient
topology on R/Z, and let B ⊆ τR/Z be any countable collection such that [0] ∈ U
for all U ∈ B. Since B is countable, there is a surjection U : N → B so that we
may list the elements of B as:

B = {U0, . . . , Un, . . . } (6)

Let q : R→ R/Z be the quotient map q(x) = [x]. Since each Un is open, q−1[Un]
is open. But [0] ∈ U0, so 0 ∈ q−1[U0]. But since q−1[U0] is open, there is an
0 < ε0 < 1/2 such that |y| < ε0 implies y ∈ q−1[U0]. Let V1 be the ε0/2 ball
centered at 0. Now, since [0] ∈ U1 and [0] = [1], we have that [1] ∈ U1. But
then 1 ∈ q−1[U1]. Since 1 ∈ q−1[U1] and q−1[U1] is open, there is a 0 < ε1 < 1/2
such that |1− y| < ε1 implies y ∈ q−1[U1]. Let V1 be the ε1/2 ball centered at
1. Inductively, since [0] = [n] and [0] ∈ Un, we have [n] ∈ Un for all n ∈ N. But
then n ∈ q−1[Un]. But q−1[Un] is open, so there is a 0 < εn < 1/2 such that
|y−n| < εn implies y ∈ q−1[Un]. Let Vn be the εn/2 ball centered about n. Let
W =

⋃∞
n=0 Vn ∪ (−∞, −1/2). Since W is the union of open subsets of R, it is

open. This set is also saturated, so q[W] ⊆ R/Z is open. By construction there
is no Un ∈ B such that Un ⊆ q[W], even though [0] ∈ q[W]. Hence B is not a
neighborhood basis for [0] and (R/Z, τR/Z) is not first-countable, and hence not
second-countable either.

The sequential property is preserved by quotients.

Theorem 4.1. If (X, τ) is a sequential topological space, if R is an equivalence
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relation on X, and if τX/R is the quotient topology on X/R, then (X/R, τX/R)
is sequential.

Proof. Suppose not. Then there is a sequentially open subset U ⊆ X/R that is
not open. But q is a quotient map, so if U is not open, then q−1[U ] is not open.
But (X, τ) is sequential, so if q−1[U ] is not open, then it is not sequentially
open. But then there is a point x ∈ q−1[U ] and a sequence a : N→ X such that
an → x but for all N ∈ N there is an n ∈ N with n > N and an /∈ q−1[U ]. But
since an → x and q is continuous, we have q(an) → q(x). But q(x) ∈ U and U
is sequentially open, so there is an N ∈ N such that for all n ∈ N with n > N
we have q(an) ∈ U . But the for all n > N we have an ∈ q−1[U ], a contradiction.
So U is open, and (X/R, τX/R) is a sequential topological space.

Two more vital properties are preserved by quotients, but we haven’t gotten to
them yet. The quotient of a connected space is still connected, and the quotient
of a compact is still compact. We’ll discuss both ideas for topological spaces in
due time.
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