# Point-Set Topology: Lecture 16 

Ryan Maguire

July 26, 2023

## 1 Finite Products

Continuing with our trend of building new topological spaces, thus far we have subspaces and quotients. If ( $X, \tau_{X}$ ) and ( $Y, \tau_{Y}$ ) are topological spaces, it is possible to put a topology on the Cartesian product $X \times Y$ in a way that respects the topologies $\tau_{X}$ and $\tau_{Y}$. It is somewhat natural to hope that the set $\tilde{\tau}_{X \times Y}$ defined by:

$$
\begin{equation*}
\tilde{\tau}_{X \times Y}=\left\{\mathcal{U} \times \mathcal{V} \subseteq X \times Y \mid \mathcal{U} \in \tau_{X} \text { and } \mathcal{V} \in \tau_{Y}\right\} \tag{1}
\end{equation*}
$$

would be a topology on $X \times Y$, but it usually is not. Consider the real line $\mathbb{R}$ with the standard topology $\tau_{\mathbb{R}}$. This has a basis $\mathcal{B}$ consisting of open intervals of the form $(a, b)$ for all $a, b \in \mathbb{R}$. The product $\mathbb{R} \times \mathbb{R}$ should just be the Euclidean plane $\mathbb{R}^{2}$, but open sets of the form $(a, b) \times(c, d)$ are open rectangles. The product of more general open subsets $\mathcal{U}, \mathcal{V} \subseteq \mathbb{R}$ could not possibly form an open disk in the plane, even though we want an open disk to be, well, open.

The set $\tilde{\tau}_{X \times Y}$ is nearly a topology. The empty set is contained in it since $\emptyset=\emptyset \times \emptyset$. The entire Cartesian product is an element since $X \in \tau_{X}$ and $Y \in \tau_{Y}$, hence $X \times Y \in \tilde{\tau}_{X \times Y}$. It is also closed under intersections since:

$$
\begin{equation*}
\left(\mathcal{U}_{0} \times \mathcal{V}_{0}\right) \cap\left(\mathcal{U}_{1} \times \mathcal{V}_{1}\right)=\left(\mathcal{U}_{0} \cap \mathcal{U}_{1}\right) \times\left(\mathcal{V}_{0} \cap \mathcal{V}_{1}\right) \tag{2}
\end{equation*}
$$

and this is an element of $\tilde{\tau}_{X \times Y}$. What fails is the union property. Again, think of $\mathbb{R} \times \mathbb{R}$. The union of two rectangles does not need to be a rectangle. Moreover, open subsets of $\mathbb{R}^{2}$ such as the open unit disk can not be written in the form $\mathcal{U} \times \mathcal{V}$ for open subsets $\mathcal{U}, \mathcal{V} \subseteq \mathbb{R}$. To ensure the product topology is indeed a topology, we need to take the topology generated from $\tilde{\tau}_{X \times Y}$.

Definition 1.1 (Product Topology of Two Topologies) The product topology of two topologies $\tau_{X}$ and $\tau_{Y}$ on sets $X$ and $Y$, respectively, is the topology on $X \times Y$ generated by the set $\mathcal{B}$ defined by:

$$
\begin{equation*}
\mathcal{B}=\left\{\mathcal{U} \times \mathcal{V} \subseteq X \times Y \mid \mathcal{U} \in \tau_{X} \text { and } \mathcal{V} \in \tau_{Y}\right\} \tag{3}
\end{equation*}
$$

This is denoted $\tau_{X \times Y}$.


Figure 1: Open Subsets of the Plane

Theorem 1.1. If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are topological spaces, and if $\tau_{X \times Y}$ is the product topology of $\tau_{X}$ and $\tau_{Y}$, then $\left(X \times Y, \tau_{X \times Y}\right)$ is a topological space.

Proof. The product topology $\tau_{X \times Y}$ is a generated topology, by definition, which is hence a topology, so $\left(X \times Y, \tau_{X \times Y}\right)$ is a topological space.

The product of two topological spaces better give us the right topologies on familiar spaces, otherwise its useless.

Theorem 1.2. If $\tau_{\mathbb{R} \times \mathbb{R}}$ is the product topology of $\tau_{\mathbb{R}}$ and $\tau_{\mathbb{R}}$, and if $\tau_{\mathbb{R}^{2}}$ is the standard Euclidean topology on $\mathbb{R}^{2}$, then $\left(\mathbb{R}^{2}, \tau_{\mathbb{R}^{2}}\right)$ and $\left(\mathbb{R} \times \mathbb{R}, \tau_{\mathbb{R} \times \mathbb{R}}\right)$ are homeomorphic.

Proof. We simply must prove the topologies $\tau_{\mathbb{R}^{2}}$ and $\tau_{\mathbb{R} \times \mathbb{R}}$ are the same set, meaning the identity function id $: \mathbb{R}^{2} \rightarrow \mathbb{R} \times \mathbb{R}$ is a homeomorphism. The standard topology on $\mathbb{R}^{2}$ is generated by the Euclidean metric:

$$
\begin{equation*}
d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|_{2} \tag{4}
\end{equation*}
$$

The topology of $\mathbb{R} \times \mathbb{R}$ is generated by open rectangles, which in turn can be generated by open squares, and open squares are the open balls in the max metric:

$$
\begin{equation*}
d_{\max }(\mathbf{x}, \mathbf{y})=\max \left(\left|x_{0}-y_{0}\right|,\left|x_{1}-y_{1}\right|\right) \tag{5}
\end{equation*}
$$

But the Euclidean metric and the max metric are topologically equivalent metrics, meaning they produce the same topologies. So, we're done.

Definition 1.2 (Projection Maps) The projection map of the Cartesian product $X \times Y$ onto $X$ is the function $\operatorname{proj}_{X}: X \times Y \rightarrow X$ defined by $\operatorname{proj}_{X}((x, y))=x$. The projection map of $X \times Y$ onto $Y$ is defined by $\operatorname{proj}_{Y}$ : $X \times Y \rightarrow Y, \operatorname{proj}_{Y}((x, y))=y$.

Projections are continuous.

Theorem 1.3. If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are topological spaces, and if $(X \times$ $\left.Y, \tau_{X \times Y}\right)$ is the product space, then $\operatorname{proj}_{X}: X \times Y \rightarrow X$ and $\operatorname{proj}_{Y}: X \times Y \rightarrow Y$ are continuous.

Proof. Let $\mathcal{U} \in \tau_{X}$ and $\mathcal{V} \in \tau_{Y}$. Then by the definition of the projection map, $\operatorname{proj}_{X}^{-1}[\mathcal{U}]=\mathcal{U} \times Y$, and $\mathcal{U} \times Y \in \tau_{X \times Y}$, so proj${ }_{X}$ is continuous. Similarly, $\operatorname{proj}_{Y}^{-1}[\mathcal{V}]=X \times \mathcal{V}$, and $X \times \mathcal{V} \in \tau_{X \times Y}$, so $\operatorname{proj}_{Y}$ is continuous.

Theorem 1.4. If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are topological spaces, and if $(X \times$ $\left.Y, \tau_{X \times Y}\right)$ is the product space, then $\operatorname{proj}_{X}: X \times Y \rightarrow X$ and $\operatorname{proj}_{X}: X \times Y \rightarrow Y$ are open maps.

Proof. Let $\mathcal{W} \in \tau_{X \times Y}$. Since $\tau_{X \times Y}$ is generated by the basis $\mathcal{B}$ defined by:

$$
\begin{equation*}
\mathcal{B}=\left\{\mathcal{U} \times \mathcal{V} \mid \mathcal{U} \in \tau_{X} \text { and } \mathcal{V} \in \tau_{Y}\right\} \tag{6}
\end{equation*}
$$

there is some collection $\mathcal{O} \subseteq \mathcal{B}$ such that $\mathcal{W}=\bigcup \mathcal{O}$. But for each $\mathcal{U} \times \mathcal{V} \in \mathcal{O}$ we have $\operatorname{proj}_{X}[\mathcal{U} \times \mathcal{V}]=\mathcal{U}$ and $\operatorname{proj}_{Y}[\mathcal{U} \times \mathcal{V}]=\mathcal{V}$. So then $\operatorname{proj}_{X}[\mathcal{W}]$ is the union of open sets in $X$, and $\operatorname{proj}_{Y}[\mathcal{W}]$ is the union of open sets in $Y$, so $\operatorname{proj}_{X}[\mathcal{W}] \in \tau_{X}$ and $\operatorname{proj}_{Y}[\mathcal{W}] \in \tau_{Y}$. That is, $\operatorname{proj}_{X}$ and $\operatorname{proj}_{Y}$ are open maps.

Unlike quotients, which preserve very few properties, products preserve quite a lot of properties.

Theorem 1.5. If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are Fréchet topological spaces, then $(X \times$ $\left.Y, \tau_{X \times Y}\right)$ is a Fréchet topological space.

Proof. Let $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right) \in X \times Y$ with $\left(x_{0}, y_{0}\right) \neq\left(x_{1}, y_{1}\right)$. Then either $x_{0} \neq x_{1}$ or $y_{0} \neq y_{1}$. Suppose $x_{0} \neq x_{1}$. The proof is symmetric if $y_{0} \neq y_{1}$. Since $\left(X, \tau_{X}\right)$ is a Fréchet topological space, and $x_{0} \neq x_{1}$, there exists $\mathcal{U}, \mathcal{V} \in \tau_{X}$ such that $x_{0} \in \mathcal{U}, x_{0} \notin \mathcal{V}, x_{1} \in \mathcal{V}$, and $x_{1} \notin \mathcal{U}$. But then $\mathcal{U} \times Y$ and $\mathcal{V} \times Y$ are open sets such that $\left(x_{0}, y_{0}\right) \in \mathcal{U} \times Y,\left(x_{0}, y_{0}\right) \notin \mathcal{V} \times Y,\left(x_{1}, y_{1}\right) \in \mathcal{V} \times Y$, and $\left(x_{1}, y_{1}\right) \notin \mathcal{U} \times Y$. Hence, $\left(X \times Y, \tau_{X \times Y}\right)$ is a Fréchet topological space.

Theorem 1.6. If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are Hausdorff topological spaces, then $\left(X \times Y, \tau_{X \times Y}\right)$ is a Hausdorff topological space.

Proof. Let $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right) \in X \times Y$ with $\left(x_{0}, y_{0}\right) \neq\left(x_{1}, y_{1}\right)$. Then either $x_{0} \neq x_{1}$ or $y_{0} \neq y_{1}$. Suppose $x_{0} \neq x_{1}$, the proof is symmetric if $y_{0} \neq y_{1}$. But $\left(X, \tau_{X}\right)$ is Hausdorff, so there are opens sets $\mathcal{U}, \mathcal{V} \in \tau_{X}$ such that $x_{0} \in \mathcal{U}$, $x_{1} \in \mathcal{V}$, and $\mathcal{U} \cap \mathcal{V}=\emptyset$. But then $\mathcal{U} \times Y$ and $\mathcal{V} \times Y$ are disjoint open sets such that $\left(x_{0}, y_{0}\right) \in \mathcal{U} \times Y$ and $\left(x_{1}, y_{1}\right) \in \mathcal{V} \times Y$. Therefore $\left(X \times Y, \tau_{X \times Y}\right)$ is a Hausdorff topological space.

Theorem 1.7. If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are first-countable topological spaces, then $\left(X \times Y, \tau_{X \times Y}\right)$ is first-countable.

Proof. Let $(x, y) \in X \times Y$. Since $x \in X$ and $\left(X, \tau_{X}\right)$ is first-countable, there is a countable neighborhood basis $\mathcal{B}_{X} \subseteq \tau_{X}$ of $x$. Since $y \in Y$ and $\left(Y, \tau_{Y}\right)$
is first-countable, there is a countable neighborhood basis $\mathcal{B}_{Y} \subseteq \tau_{Y}$ of $y$. Let $\mathcal{B} \subseteq \tau_{X \times Y}$ be defined as:

$$
\begin{equation*}
\mathcal{B}=\left\{\mathcal{U} \times \mathcal{V} \in \tau_{X \times Y} \mid \mathcal{U} \in \mathcal{B}_{X} \text { and } \mathcal{V} \in \mathcal{B}_{Y}\right\} \tag{7}
\end{equation*}
$$

Since $\mathcal{B}_{X}$ and $\mathcal{B}_{Y}$ are countable, so is $\mathcal{B}$. Since $x \in \mathcal{U}$ for all $\mathcal{U} \in \mathcal{B}_{X}$ and $y \in \mathcal{V}$ for all $\mathcal{V} \in \mathcal{B}_{Y}$, we have that $(x, y) \in \mathcal{U} \times \mathcal{V}$ for all $\mathcal{U} \times \mathcal{V} \in \mathcal{B}$. We now need to show that $\mathcal{B}$ is a neighborhood basis of $(x, y)$. Let $\mathcal{W} \in \tau_{X \times Y}$ be a set containing $(x, y)$. Then, by the definition of the product topology, there is a subset $\mathcal{O} \subseteq \tau_{X \times Y}$ such that $\mathcal{W}=\bigcup \mathcal{O}$ and all elements of $\mathcal{O}$ are of the form $\mathcal{U} \times \mathcal{V}$ with $\mathcal{U} \in \tau_{X}$ and $\mathcal{V} \in \tau_{Y}$. But $(x, y) \in \mathcal{W}$, so there is an element $\mathcal{U} \times \mathcal{V} \in \mathcal{O}$ with $(x, y) \in \mathcal{U} \times \mathcal{V}$. Then $x \in \mathcal{U}$ and $y \in \mathcal{V}$. But $\mathcal{B}_{X}$ is a neighborhood basis of $x$, so there is a $\tilde{\mathcal{U}} \in \mathcal{B}_{X}$ such that $\tilde{\mathcal{U}} \subseteq \mathcal{U}$. But $\mathcal{B}_{Y}$ is a neighborhood basis of $y$ so there is a $\tilde{\mathcal{V}} \in \mathcal{B}_{Y}$ such that $\tilde{\mathcal{V}} \subseteq \mathcal{V}$. But then $\tilde{\mathcal{U}} \times \tilde{\mathcal{V}}$ is an element of $\mathcal{B}$ such that $\tilde{\mathcal{U}} \times \tilde{\mathcal{V}} \subseteq \mathcal{U} \times \mathcal{V}$, and since $\mathcal{U} \times \mathcal{V} \subseteq \mathcal{W}$, we have $\tilde{\mathcal{U}} \times \tilde{\mathcal{V}} \subseteq \mathcal{W}$. Hence, $\mathcal{B}$ is a countable neighborhood basis of $(x, y)$ and $\left(X \times Y, \tau_{X \times Y}\right)$ is first-countable.

Theorem 1.8. If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are second-countable topological spaces, then $\left(X \times Y, \tau_{X \times Y}\right)$ is second-countable.

Proof. Since $\left(X, \tau_{X}\right)$ is second-countable, there is a countable basis $\mathcal{B}_{X}$ for $\tau_{X}$. Since $\left(Y, \tau_{Y}\right)$ is second-countable, there is a countable basis $\mathcal{B}_{Y}$ for $\tau_{Y}$. Let $\mathcal{B}$ be defined by:

$$
\begin{equation*}
\mathcal{B}=\left\{\mathcal{U} \times \mathcal{V} \mid \mathcal{U} \in \mathcal{B}_{X} \text { and } \mathcal{V} \in \mathcal{B}_{Y}\right\} \tag{8}
\end{equation*}
$$

Then $\mathcal{B}$ has a cardinality bounded by $\mathbb{N} \times \mathbb{N}$, which is countable. We now need to prove $\mathcal{B}$ is a countable basis of $\tau_{X \times Y}$. To do this it suffices to show that any open set $\mathcal{W} \in \tau_{X \times Y}$ can be written as $\mathcal{W}=\bigcup \mathcal{O}$ for some set $\mathcal{O} \subseteq \mathcal{B}$. Define $\mathcal{O}$ via:

$$
\begin{equation*}
\mathcal{O}=\{\mathcal{U} \times \mathcal{V} \in \mathcal{B} \mid \mathcal{U} \times \mathcal{V} \subseteq \mathcal{W}\} \tag{9}
\end{equation*}
$$

Then by definition of $\mathcal{O}$ we have that $\bigcup \mathcal{O} \subseteq \mathcal{W}$. Let's reverse this. Let $(x, y) \in$ $\mathcal{W}$. Then, since projection maps are open maps, $x \in \operatorname{proj}_{X}(\mathcal{W})$, which is an open set. Since $\mathcal{B}_{X}$ is a basis there is some $\mathcal{U} \in \mathcal{B}_{X}$ such that $x \in \mathcal{U}$ and $\mathcal{U} \subseteq \operatorname{proj}_{X}(\mathcal{W})$. Similarly there is some $\mathcal{V} \in \mathcal{B}_{Y}$ such that $y \in \mathcal{V}$ and $\mathcal{V} \subseteq \operatorname{proj}_{Y}(\mathcal{W})$. But then $(x, y) \in \mathcal{U} \times \mathcal{V}$ and $\mathcal{U} \times \mathcal{V} \subseteq \mathcal{W}$. Morever, since $\mathcal{U} \in \mathcal{B}_{X}$ and $\mathcal{V} \in \mathcal{B}_{Y}$, we have that $\mathcal{U} \times \mathcal{V} \in \mathcal{B}$. But then $\mathcal{U} \times \mathcal{V} \in \mathcal{O}$, and hence $(x, y) \in \bigcup \mathcal{O}$. That is, $\mathcal{W} \subseteq \bigcup \mathcal{O}$, and therefore $\mathcal{W}=\bigcup \mathcal{O}$. So $\mathcal{B}$ is a countable basis.

The way to often think of product spaces $\left(X \times Y, \tau_{X \times Y}\right)$ is to take a copy of $X$ and attach it to each $y \in Y$. Similarly, you could think of attaching a copy of $Y$ to each $x \in X$. This mode of thinking makes it easier to visualize certain product spaces.

Example 1.1 The plane $\mathbb{R}^{2}$ can be thought of as attaching a copy of $\mathbb{R}$ to each real number $x \in \mathbb{R}$. That is, think of $\mathbb{R}$ as a horizontal line, and at each $x \in \mathbb{R}$ attach a copy of $\mathbb{R}$ that is directed vertically. The result is $\mathbb{R}^{2}$.


Figure 2: The Torus $\mathbb{T}^{2}$

Example 1.2 Letting $\mathbb{S}^{1}$ denote the unit circle in the plane, $\mathbb{R} \times \mathbb{S}^{1}$ is a cylinder. At every point $\mathbf{x} \in \mathbb{S}^{1}$, attach a copy of the real line that is directed upwards out of the plane. The result is a cylinder in $\mathbb{R}^{3}$.
Example 1.3 The space $\mathbb{S}^{1} \times \mathbb{S}^{1}$ is the torus, and this is denoted $\mathbb{T}^{2}$. As a set it lives as a subset of $\mathbb{R}^{4}$ since $\mathbb{S}^{1} \subseteq \mathbb{R}^{2}$, and hence $\mathbb{S}^{1} \times \mathbb{S}^{1} \subseteq \mathbb{R}^{4}$. However, it is far easier to visualize this space as a subset of $\mathbb{R}^{3}$ using our intuition of attaching spaces to points. At every point on the first circle $\mathbb{S}^{1}$ we attach a copy of the second circle $\mathbb{S}^{1}$. The result is a circle of circles, which is the torus, and this can be embedded into $\mathbb{R}^{3}$. This is done in Fig. 2.

Products also preserve the property of being metrizable. We've seen this before when we constructed several equivalent metrics on $\mathbb{R}^{2}$ using the standard metric on $\mathbb{R}$.

Theorem 1.9. If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are metrizable topological spaces, then $\left(X \times Y, \tau_{X \times Y}\right)$ is metrizable.
Proof. Since $\left(X, \tau_{X}\right)$ is metrizable, there is a metric $d_{X}$ on $X$ that induces $\tau_{X}$. Since $\left(Y, \tau_{Y}\right)$ is metrizable, there is a metric $d_{Y}$ on $Y$ that induces $\tau_{Y}$. Let $d_{X \times Y}$ be defined by:

$$
\begin{equation*}
d_{X \times Y}\left(\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)\right)=d_{X}\left(x_{0}, x_{1}\right)+d_{Y}\left(y_{0}, y_{1}\right) \tag{10}
\end{equation*}
$$

Then $d_{X \times Y}$ is a metric. It is positive-definite, symmetric, and satisfies the triangle inequality since $d_{X}$ and $d_{Y}$ do. It also induces $\tau_{X \times Y}$. A set is open with the metric $d_{X \times Y}$ if and only if it is the union of open balls with the $d_{X \times Y}$ metric. Since sets of the form $\mathcal{U} \times \mathcal{V} \in \tau_{X \times Y}$ with $\mathcal{U} \in \tau_{X}$ and $\mathcal{V} \in \tau_{Y}$ form a basis for $\tau_{X \times Y}$, it suffices to show that all $\mathcal{U} \times \mathcal{V}$ are the union of open balls. For all $(x, y) \in \mathcal{U} \times \mathcal{V}$, since $d_{X}$ induces $\tau_{X}$, there is an $r_{x}>0$ such that $B_{r_{x}}^{\left(X, d_{X}\right)}(x) \subseteq \mathcal{U}$. Since $d_{Y}$ induces $\tau_{Y}$, there is an $r_{y}>0$ such that $B_{r_{y}}^{\left(Y, d_{Y}\right)}(y) \subseteq \mathcal{V}$. Let $r_{(x, y)}=\min \left(r_{x}, r_{y}\right)$. Then $B_{r_{(x, y)}^{\left(X \times Y, d_{X \times Y}\right)}}^{((x, y)) \text { is a }}$ subset of $\mathcal{U} \times \mathcal{V}$. For let $(a, b) \in B_{r_{(x, y)}}^{\left(X \times Y, d_{X \times Y)}\right.}((x, y))$. But then:

$$
\begin{equation*}
d_{X}(a, x) \leq d_{X}(a, x)+d_{Y}(b, y)=d_{X \times Y}((a, x),(b, y))<r_{(x, y)} \leq r_{x} \tag{11}
\end{equation*}
$$

so $a \in B_{r_{x}}^{\left(X, d_{X}\right)}(x)$, and hence $a \in \mathcal{U}$. Similarly:

$$
\begin{equation*}
d_{Y}(b, y) \leq d_{X}(a, x)+d_{Y}(b, y)=d_{X \times Y}((a, x),(b, y))<r_{(x, y)} \leq r_{y} \tag{12}
\end{equation*}
$$

so $b \in B_{r_{y}}^{\left(Y, d_{Y}\right)}(y)$, and hence $b \in \mathcal{V}$. So $(a, b) \in \mathcal{U} \times \mathcal{V}$. Let $\mathcal{W}_{(x, y)}$ be the $r_{(x, y)}$ ball in $\left(X \times Y, d_{X \times Y}\right)$ centered at $(x, y)$ for all $(x, y) \in \mathcal{U} \times \mathcal{V}$. Then, since $(x, y) \in \mathcal{W}_{(x, y)}$, we have:

$$
\begin{equation*}
\mathcal{U} \times \mathcal{V} \subseteq \bigcup_{(x, y) \in \mathcal{U} \times \mathcal{V}} \mathcal{W}_{(x, y)} \tag{13}
\end{equation*}
$$

But also $\mathcal{W}_{(x, y)} \subseteq \mathcal{U} \times \mathcal{V}$ for all $(x, y) \in \mathcal{U} \times \mathcal{V}$, so:

$$
\begin{equation*}
\bigcup_{(x, y) \in \mathcal{U} \times \mathcal{V}} \mathcal{W}_{(x, y)} \subseteq \mathcal{U} \times \mathcal{V} \tag{14}
\end{equation*}
$$

Hence $\mathcal{U} \times \mathcal{V}$ is the union of open balls in the $d_{X \times Y}$ metric. That is, an open set in $\tau_{X \times Y}$ is the union of open balls, meaning $\tau_{X \times Y} \subseteq \tau_{d_{X \times Y}}$. We must reverse this. This is, we must show that the union of open balls is open with respect to $\tau_{X \times Y}$. To do this it suffices to show that open balls with the $d_{X \times Y}$ metric are open in the topology $\tau_{X \times Y}$, since then the union of open balls would be the union of open sets, which is therefore open. So let $(x, y) \in X \times Y$ and $r>0$. Let $(a, b) \in B_{r}^{\left(X \times Y, d_{X \times Y)}\right.}((x, y))$. Let $r_{(a, b)}=\frac{1}{2}\left(r-d_{X \times Y}((a, x),(b, y))\right.$. Let $\mathcal{U}_{a}=B_{r_{(a, b)}}^{\left(X, d_{X}\right)}(x)$ and $\mathcal{V}_{b}=B_{r_{(a, b)}}^{\left(Y, d_{Y}\right)}(y)$. Then $\mathcal{U}_{a} \times \mathcal{V}_{b} \subseteq B_{r}^{\left(X \times Y, d_{X \times Y}\right)}((x, y))$. For if $\left(x_{0}, y_{0}\right) \in \mathcal{U}_{a} \times \mathcal{V}_{b}$, then:

$$
\begin{align*}
d_{X \times Y} & \left(\left(x_{0}, y_{0}\right),(x, y)\right) \\
\quad \leq & d_{X \times Y}\left(\left(x_{0}, y_{0}\right),(a, b)\right)+d_{X \times Y}((a, b),(x, y))  \tag{15}\\
\quad= & d_{X}\left(x_{0}, a\right)+d_{Y}\left(y_{0}, b\right)+d_{X \times Y}((a, b),(x, y))  \tag{16}\\
< & \frac{1}{2}\left(r-d_{X \times Y}((a, b),(x, y))\right)+\frac{1}{2}\left(r-d_{X \times Y}((a, b),(x, y))\right) \\
& +d_{X \times Y}((a, b),(x, y))  \tag{17}\\
= & r \tag{18}
\end{align*}
$$

So $B_{r}^{\left(X \times Y, \tau_{X \times Y)}\right.}((x, y))$ can be written as the union of all such $\mathcal{U}_{a} \times \mathcal{V}_{b}$ for all $(a, b)$ in the set, meaning open balls with the $d_{X \times Y}$ metric are open. So a set is open in $\tau_{X \times Y}$ if and only if it is open with respect to $d_{X \times Y}$, so $d_{X \times Y}$ induces the topology and ( $X \times Y, \tau_{X \times Y}$ ) is metrizable.

Products can be performed for any finite collection of topological spaces. We replace $X \times Y$ with $\prod_{n \in \mathbb{Z}_{N}} X_{n}$, given a collection of $N \in \mathbb{N}$ topological spaces $\left(X_{n}, \tau_{n}\right)$. The topology is generated by sets of the form $\prod_{n \in \mathbb{Z}_{N}} \mathcal{U}_{n}$ where $\mathcal{U}_{n} \in$ $\tau_{n}$ for all $n \in \mathbb{Z}_{N}$. All of the previous theorems still hold for finite products, and the proofs are done by induction. (Try it yourself, I can't prove everything for you!)

- The finite product of Fréchet spaces is Fréchet.
- The finite product of Hausdorff spaces is Hausdorff.
- The finite product of first-countable spaces is first-countable.
- The finite product of second-countable spaces is second-countable.
- The finite product of metrizable spaces is metrizable.

The product of sequential spaces does not need to be sequential.

## 2 Infinite Products

When we go from the finite world to the infinite things get a bit problematic. First, how do we even topologize an infinite product? There are two ways: the obvious way, and the correct one. It took me a long time to realize that the obvious way is not the correct one. I've a few examples up my sleeves, so hopefully you'll realize sooner than I did. The obvious way is the box topology. Given a set $I$ such that for all $\alpha \in I$ we have that $\left(X_{\alpha}, \tau_{\alpha}\right)$ is a topological space, we can form the following basis $\mathcal{B}_{\text {Box }}$ for the product:

$$
\begin{equation*}
\mathcal{B}_{\mathrm{Box}}=\left\{\prod_{\alpha \in I} \mathcal{U}_{\alpha} \mid \mathcal{U}_{\alpha} \in \tau_{\alpha} \text { for all } \alpha \in I\right\} \tag{19}
\end{equation*}
$$

This should definitely be considered the obvious way. We stole our idea for finite products and just generated a topology using this. This idea is horrible, unfortunately. The set $\mathbb{R}^{\infty}=\prod_{n=0}^{\infty} \mathbb{R}$ is the set of all sequences in $\mathbb{R}$. The function $f: \mathbb{R} \rightarrow \mathbb{R}^{\infty}$ defined by $f(x)=a: \mathbb{N} \rightarrow \mathbb{R}$ where $a_{n}=x$ for all $n \in \mathbb{N}$ certainly seems like a simple enough function. Intuitively, this is the function:

$$
\begin{equation*}
f(x)=(x, x, x, \ldots, x, \ldots) \tag{20}
\end{equation*}
$$

Note that in each component the function is indeed continuous. That is, $f_{n}$ : $\mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{n}(x)=f(x)_{n}$ is just $f_{n}(x)=x$, which is continuous. With respect to the box topology, $f$ is nowhere continuous. Talk about aweful! This is one of the simplest functions one could describe from $\mathbb{R}$ to $\mathbb{R}^{\infty}$ and yet the box topology says it's everywhere discontinuous.

If you were given a function $f: \mathbb{R} \rightarrow \mathbb{R}^{3}$ from calculus like:

$$
\begin{equation*}
f(t)=\left(t^{2}+1, \sin (t) e^{t}, t^{3}-t\right) \tag{21}
\end{equation*}
$$

would you bother checking that the pre-image of an open set is open to determine $f$ is continuous? Of course not, you'd note that in the $x$ coordinate we have $x(t)=t^{2}+1$, which is a polynomial, so it is continuous. In the $y$ coordinate you have $y(t)=\sin (t) e^{t}$, the product of continuous functions, so continuous. In the $z$ coordinate you have $z(t)=t^{3}-t$, another polynomial. Since $f$ is continuous
in all of its components, you'd rightly conclude that $f$ is continuous. This is the way continuous functions should work with infinite products as well, but the box topology lacks such a feature. The problem is the box topology is way to big. We need to restrict which sets we consider open if we want a nice topology on the product. Let's try the following. Define $\mathcal{B}_{\text {Prod }}$ as:

$$
\begin{equation*}
\mathcal{B}_{\text {Prod }}=\left\{\prod_{\alpha \in I} \mathcal{U}_{\alpha} \mid \mathcal{U}_{\alpha} \in \tau_{\alpha} \text { and } \mathcal{U}_{\alpha}=X_{\alpha} \text { for all but finitely many } \alpha \in I\right\} \tag{22}
\end{equation*}
$$

Let $\tau_{\text {Box }}$ and $\tau_{\text {Prod }}$ be the topologies generated from $\mathcal{B}_{\text {Box }}$ and $\mathcal{B}_{\text {Prod }}$, respectively. Hopefully from the definition it is clear that $\tau_{\text {Prod }} \subseteq \tau_{\text {Box }}$. The product topology is formed in a similar manner to the box topology, but with a major restriction on which sets we use to generate our topology.

The product topology is precisely the topology that makes it so that a function $f: Y \rightarrow \prod_{\alpha \in I} X_{\alpha}$, with respect to a topological space $\left(Y, \tau_{Y}\right)$, is continuous if and only if $f_{\alpha}: Y \rightarrow X_{\alpha}$, the component function, is continuous for all $\alpha \in I$. You will prove this in your homework.

Note that the box topology and the product topology are the same for finite products. It's only in the infinite world where things differ. The product topology also has the following nice feature.

Theorem 2.1. If $\mathcal{X}$ is a countable set of metrizable spaces $\left(X_{n}, \tau_{n}\right)$, if $\tau_{\Pi}$ is the product topology on $\prod_{n \in \mathbb{N}} X_{n}$, then $\left(\prod_{n \in \mathbb{N}} X_{n}, \tau_{\Pi}\right)$ is metrizable.
Proof. For each space $\left(X_{n}, \tau_{n}\right)$ there is a metric $d_{n}$ that induces the topology. These metrics may be unbounded, so define $\rho_{n}$ to be the topologically equivalence metric given by:

$$
\begin{equation*}
\rho_{n}(x, y)=\frac{d_{n}(x, y)}{1+d_{n}(x, y)} \tag{23}
\end{equation*}
$$

Define $d_{\Pi}$ by:

$$
\begin{equation*}
d_{\Pi}(a, b)=\sum_{n=0}^{\infty} \frac{\rho_{n}\left(a_{n}, b_{n}\right)}{2^{n}} \tag{24}
\end{equation*}
$$

(Remember, $a \in \prod_{n \in \mathbb{N}} X_{n}$ is a sequence $a: \mathbb{N} \rightarrow \bigcup_{n \in \mathbb{N}} X_{n}$ such that $a_{n} \in X_{n}$ for all $n \in \mathbb{N}$ ). This sum converges since each $\rho_{n}$ is bounded by 1 , so we have a valid function on $\prod_{n \in \mathbb{N}} X_{n}$. It is also metric. It is positive-definite, symmetric, and satisfies the triangle inequality since all of the $\rho_{n}$ do. The product topology has a subbasis of open sets of the form:

$$
\begin{equation*}
\tilde{\mathcal{U}}=\prod_{n=0}^{\infty} \mathcal{U}_{n} \tag{25}
\end{equation*}
$$

where $\mathcal{U}_{n} \in \tau_{n}$ for all $n \in \mathbb{N}$, and $\mathcal{U}_{n}=X_{n}$ for all but one $n \in \mathbb{N}$ (this is a subbasis, not a basis). So we need to just show that these subbasis elements
are open with respect to $d_{\Pi}$. Given $a \in \tilde{\mathcal{U}}, a_{n} \in \mathcal{U}_{n} \in \tau_{n}$, since $\rho_{n}$ induces $\tau_{n}$, there is an $r^{\prime}>0$ such that $B_{r}^{\left(X_{n}, \rho_{n}\right)}\left(a_{n}\right) \subseteq \mathcal{U}_{n}$. Let $r=r^{\prime} / 2^{n}$. But then $B_{r}^{\left(\prod_{n} X_{n}, d_{\Pi}\right)}(a) \subseteq \tilde{\mathcal{U}}$ since given $b \in B_{r}^{\left(\prod_{n} X_{n}, d_{\Pi}\right)}(a)$, we have:

$$
\begin{equation*}
\frac{1}{2^{n}} \rho_{n}\left(a_{n}, b_{n}\right) \leq \sum_{k=0}^{\infty} \frac{\rho_{k}\left(a_{k}, b_{k}\right)}{2^{k}}<r=\frac{r^{\prime}}{2^{n}} \tag{26}
\end{equation*}
$$

and hence $\rho_{n}\left(a_{n}, b_{n}\right)<r^{\prime}$, so $b_{n} \in \mathcal{U}_{n}$, and therefore $b \in \tilde{\mathcal{U}}$. Next, to show open balls are open. Let $r>0$ and $a$ an element of the product set and choose $N \in \mathbb{N}$ such that $1 / 2^{N}<r / 2$. Let $\mathcal{U}_{n}$ be the $r / 4$ ball centered at $a_{n}$ for all $n \in \mathbb{Z}_{N}$, and $\mathcal{U}_{n}=X_{n}$ for all $n \geq N$. Then $\prod_{n \in \mathbb{N}} \mathcal{U}_{n} \in \tau_{\Pi}$ by the definition of the product topology. But also $\prod_{n \in \mathbb{N}} \mathcal{U}_{n} \subseteq B_{r}^{\left(\prod_{n} X_{n}, d_{\Pi}\right)}(a)$. For if $b \in \prod_{n \in \mathbb{N}} \mathcal{U}_{n}$, then:

$$
\begin{align*}
d_{\Pi}(a, b) & =\sum_{n=0}^{\infty} \frac{\rho_{n}\left(a_{n}, b_{n}\right)}{2^{n}}  \tag{27}\\
& =\sum_{n=0}^{N-1} \frac{\rho_{n}\left(a_{n}, b_{n}\right)}{2^{n}}+\sum_{n=N}^{\infty} \frac{\rho_{n}\left(a_{n}, b_{n}\right)}{2^{n}}  \tag{28}\\
& <\sum_{n=0}^{N-1} \frac{r}{4} \frac{1}{2^{n}}+\sum_{n=N}^{\infty} \frac{1}{2^{n}}  \tag{29}\\
& <\frac{r}{2}+\frac{r}{2}  \tag{30}\\
& =r \tag{31}
\end{align*}
$$

So we can find an open set containing $a$ that fits entirely inside of the $r$ ball centered at $a$. This can be modified for all elements of the $r$ ball centered at $a$, meaning this set can be written as the union of open sets, which is therefore open. So open balls with respect to $d_{\Pi}$ are open in $\tau_{\Pi}$, and open sets in $\tau_{\Pi}$ are open with respect to $d_{\Pi}$. Hence $d_{\Pi}$ induces the topology and $\left(\prod_{n \in \mathbb{N}} X_{n}, \tau_{\Pi}\right)$ is metrizable.

The claim is not true for uncountable products. The product of uncountably many metrizable spaces need not be first-countable, and hence cannot possibly be metrizable.

## 3 Homotopy and Homotopy Equivalence

Homeomorphism is the main notion of sameness for topological spaces. If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are homeomorphic, then topologically they are indistinguishable and may as well be regarded as the same topological space. There is another notion of same that is far weaker, but also very intuitive and pictorial. This idea is described by homotopies. Homotopy is motivated by curves in the plane. Suppose we have $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$ defined by $f(x)=\exp (x)$ and $g(x)=x^{3}$. We visualize these functions as curves


Figure 3: Homotopy Between Curves
$\alpha, \beta:[0,1] \rightarrow \mathbb{R}^{2}$ defined by $\alpha(t)=(t, f(t))$ and $\beta(t)=(t, g(t))$. A homotopy from the curve $\alpha$ to the curve $\beta$ is a way of continuously deforming $\alpha$ into $\beta$. In the plane this can be done by dragging the point $\alpha(t)$ to the point $\beta(t)$ along the straight line between them for all $t \in[0,1]$. This is shown in Fig. 3. We use this to motivate homotopies in general. It should be a way of continuously deforming one function into another.

Definition 3.1 (Homotopy) A homotopy from a continuous function $f_{0}$ : $X \rightarrow Y$ to a continuous function $f_{1}: X \rightarrow Y$ between topological spaces $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ is a continuous function $H: X \times[0,1] \rightarrow Y$, where $[0,1]$ has the subspace topology from $\mathbb{R}$ and $X \times[0,1]$ has the product topology, such that for all $x \in X$ we have $H(x, 0)=f_{0}(x)$ and $H(x, 1)=f_{1}(x)$.

Some spaces, such as Euclidean spaces, are too nice and have the property that all continuous functions are homotopic to one another.

Theorem 3.1. If $(X, \tau)$ is a topological space, if $\tau_{\mathbb{R}^{n}}$ is the standard Euclidean topology on $\mathbb{R}^{n}$, and if $f_{0}, f_{1}: X \rightarrow \mathbb{R}^{n}$ are continuous functions, then there is a homotopy $H: X \times[0,1] \rightarrow \mathbb{R}^{n}$ between $f_{0}$ and $f_{1}$.

Proof. Define $H: X \times[0,1] \rightarrow \mathbb{R}^{n}$ via:

$$
\begin{equation*}
H(x, t)=(1-t) f_{0}(x)+t f_{1}(x) \tag{32}
\end{equation*}
$$

Since multiplication and addition is continuous in $\mathbb{R}^{n}$, and since $f_{0}$ and $f_{1}$ are continuous, $H$ is continuous. Moreover, for all $x \in X$ we have $H(x, 0)=f_{0}(x)$ and $H(x, 1)=f_{1}(x)$, so $H$ is a homotopy between $f_{0}$ and $f_{1}$.

Homotopic is an equivalence relation on the set of all continuous functions between $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$.

Theorem 3.2. If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are topological spaces, and if $f: X \rightarrow Y$ is continuous, then $f$ is homotopic to itself.

Proof. Let $H: X \times[0,1] \rightarrow Y$ be defined by $H(x, t)=f(x)$. Then, since $f$ is continuous, so is $H$. However $H(x, 0)=f(x)$ and $H(x, 1)=f(x)$, so $H$ is a homotopy from $f$ to itself.

Theorem 3.3. If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are topological spaces, and if $f_{0}, f_{1}$ : $X \rightarrow Y$ are continuous functions such that $f_{0}$ is homotopic to $f_{1}$, then $f_{1}$ is homotopic to $f_{0}$.

Proof. Since $f_{0}$ is homotopic to $f_{1}$ there is a homotopy $H: X \times[0,1] \rightarrow Y$ such that $H(x, 0)=f_{0}(x)$ and $H(x, 1)=f_{1}(x)$ for all $x \in X$. Define $G: X \times[0,1] \rightarrow$ $Y$ via:

$$
\begin{equation*}
G(x, t)=H(x, 1-t) \tag{33}
\end{equation*}
$$

Since $h:[0,1] \rightarrow[0,1]$ defined by $h(t)=1-t$ is continuous, and since $H$ is continuous, $G$ is continuous as well. But $G(x, 0)=H(x, 1)=f_{1}(x)$ and $G(x, 1)=H(x, 0)=f_{0}(x)$. So $G$ is a homotopy from $f_{1}$ to $f_{0}$.

Transitivity requires the pasting lemma, a fundamental result about building continuous functions by gluing two functions together.

Theorem 3.4 (The Pasting Lemma). If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are topological spaces, if $A, B \subseteq X$ are closed subsets, if $X=A \cup B$, and if $f_{0}: A \rightarrow Y$ and $f_{1}: B \rightarrow Y$ are continuous functions with the subspace topologies on $A$ and $B$ such that for all $x \in A \cap B$ it is true that $f_{0}(x)=f_{1}(x)$, then the function $f: X \rightarrow Y$ defined by:

$$
f(x)= \begin{cases}f_{0}(x) & x \in A  \tag{34}\\ f_{1}(x) & x \in B\end{cases}
$$

is continuous.
Proof. First, $f$ is a function. It is well-defined since on $A \cap B$ the functions $f_{0}$ and $f_{1}$ agree. Second, for all $x \in X$ there is a $y \in Y$ such that $f(x)=y$ since $A \cup B=X$, so both $A$ and $B$ cover $X$. Now to show it is continuous. Let $\mathcal{D} \subseteq Y$ be closed. Then since $f_{0}$ is continuous, $f_{0}^{-1}[\mathcal{D}]$ is closed. But $f_{1}$ is also continuous, so $f_{1}^{-1}[\mathcal{D}]$ is closed. But then:

$$
\begin{equation*}
f^{-1}[\mathcal{D}]=f_{0}^{-1}[\mathcal{D}] \cup f_{1}^{-1}[\mathcal{D}] \tag{35}
\end{equation*}
$$

Hence $f^{-1}[\mathcal{D}]$ is the union of two closed sets, which is closed. Therefore, $f$ is continuous.


Figure 4: Homotopy Between Continuous Functions

Theorem 3.5. If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are topological spaces, if $f_{0}, f_{1}, f_{2}: X \rightarrow$ $Y$ are continuous, if $f_{0}$ is homotopic to $f_{1}$, and if $f_{1}$ is homotopic to $f_{2}$, then $f_{0}$ is homotopic to $f_{2}$.

Proof. Since $f_{0}$ is homotopic to $f_{1}$, there is a homotopy $H: X \times[0,1] \rightarrow Y$ such that $H(x, 0)=f_{0}(x)$ and $H(x, 1)=f_{1}(x)$. Since $f_{1}$ and $f_{2}$ are homotopic, there is a homotopy $G: X \times[0,1] \rightarrow Y$ such that $G(x, 0)=f_{1}(x)$ and $G(x, 1)=f_{2}(x)$. Define $F: X \times[0,1] \rightarrow Y$ via:

$$
F(x, t)= \begin{cases}H(x, 2 t) & 0 \leq t \leq \frac{1}{2}  \tag{36}\\ G(x, 2 t-1) & \frac{1}{2} \leq t \leq 1\end{cases}
$$

This is well-defined since $F\left(t, \frac{1}{2}\right)=H(x, 1)=G(x, 0)=f_{1}(x)$ for all $x \in X$. It is also continuous by the pasting lemma, since both $H$ and $G$ are continuous. But also $F(x, 0)=H(x, 0)=f_{0}(x)$ and $F(x, 1)=G(x, 1)=f_{2}(x)$, so $F$ is a homotopy between $f_{0}$ and $f_{2}$.

For the more general picture with $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ being arbitrary topological spaces, we use Fig. 4 for guiding intuition. In the case $\left(X, \tau_{X}\right)=$ ( $[0,1], \tau_{[0,1]}$ ), the closed unit interval with the subspace topology, we again think of curves in the space $\left(Y, \tau_{Y}\right)$. See Fig. 5


Figure 5: Homotopy Between Curves

Think of the circle $\mathbb{S}^{1}$ with the subspace topology from $\mathbb{R}^{2}$. Given two continuous functions $f_{0}, f_{1}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$, do you think it must be true that $f_{0}$ and $f_{1}$ are homotopic, like was the case with $\mathbb{R}^{n}$ ? Let's alter the question slightly. Consider the functions $f_{0}, f_{1}:[0,1] \rightarrow \mathbb{S}^{1}$ defined by $f_{0}(t)=(\cos (\pi t), \sin (\pi t))$ and $f_{1}(t)=(\cos (\pi t),-\sin (\pi(t)))$. These functions start and end at the same points on the circle. Can you deform $f_{0}$ into $f_{1}$ while keeping the endpoints fixed and staying inside the circle? If you could leave the circle, the problem would be


Figure 6: Two Curves on $\mathbb{S}^{1}$
easy, just do the straight line homotopy $H(s, t)=(1-t) f_{0}(s)+t f_{1}(s)$, but that is not the question. You may not change the endpoints and you can't leave the circle. Hopefully this seems impossible, and because this is impossible it is not true that all functions $f_{0}, f_{1}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ are homotopic.

The feature Euclidean space has is that it is contractible, it can be shrunk down continuously to a point. The circle has a large hole in it and cannot be collapsed to a point. To make this precise, now is the time to talk about homotopy equivalences. First, one more definition.

Definition 3.2 (Homotopy Inverse) A homotopy inverse for a continuous function $f: X \rightarrow Y$ from a topological space $\left(X, \tau_{X}\right)$ to a topological space $\left(Y, \tau_{Y}\right)$ is a continuous function $g: Y \rightarrow X$ such that $g \circ f: X \rightarrow X$ is homotopic to the identity function $\operatorname{id}_{X}$ and $f \circ g: Y \rightarrow Y$ is homotopic to the identity function $\mathrm{id}_{Y}$.

Definition 3.3 (Homotopy Equivalence Topological Spaces) Homotopy equivalent topological spaces are topological spaces $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ such that there is a continuous function $f: X \rightarrow Y$ that has a homotopy inverse $g: Y \rightarrow X . f$ and $g$ are called homotopy equivalences.

Homotopy equivalent is a new notion of sameness for topological spaces, but it is far weaker than homeomorphic. It is also extremely visual and intuitive, once you get the idea. In homeomorphisms you are allowed to continuously and bijectively move your space around. With homotopy equivalence you are allowed to do a lot more. You can squeeze points together, stretch points out, you just can't tear your space. Homeomorphisms are, in particular, homotopy equivalences.

Theorem 3.6. If $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are homeomorphic topological spaces, then they are homotopy equivalent.

Proof. Since $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are homeomorphic, there is a homeomorphism $f: X \rightarrow Y$. But then $f$ is continuous, bijective, and $f^{-1}$ is continuous. But
then $f^{-1}$ is a homotopy inverse of $f$ since it is continuous and $f \circ f^{-1}=\operatorname{id}_{Y}$ and $f^{-1} \circ f=\operatorname{id}_{X}$. But any continuous function is homotopic to itself, so if $f \circ f^{-1}=\mathrm{id}_{Y}$, then $f \circ f^{-1}$ is homotopic to $\mathrm{id}_{Y}$. Similarly $f^{-1} \circ f$ is homotopic to $\operatorname{id}_{X}$, and therefore $f$ and $f^{-1}$ are homotopy inverses of each other, meaning $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are homotopy equivalent.

This theorem does not reverse.
Theorem 3.7. $\mathbb{R}^{n}$, with the standard topology, is homotopy equivalent to $\{0\}$ with the subspace topology.

Proof. Define $f: \mathbb{R}^{n} \rightarrow\{0\}$ via $f(\mathbf{x})=0$. This is a constant function, so it is continuous. Let $g:\{0\} \rightarrow \mathbb{R}^{n}$ be defined by $g(0)=\mathbf{0}$. Since $g$ is a constant function, it is continuous. But $(g \circ f)(\mathbf{x})=\mathbf{0}$, and this is homotopic to $\mathrm{id}_{\mathbb{R}^{n}}$ with the homotopy $H(\mathbf{x}, t)=t \mathbf{x}$. Also, $(f \circ g)(0)=0$, so $f \circ g=\operatorname{id}_{\{0\}}$, so $f \circ g$ is certainly homotopic to the identity since it is equal to it. Hence $f$ and $g$ are homotopy inverses of each other.

This idea gets a name.
Definition 3.4 (Contractible Topological Space) A contractible topological space is a topological space $(X, \tau)$ that is homotopy equivalent to a single point $\{0\}$.
$\mathbb{R}^{n}$ is not homeomorphic to a point, homeomorphisms must be bijective. This shows homotopy equivalent is much weaker. But even if $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are topological spaces where $X$ and $Y$ have the same cardinality, it is possible for these spaces to be homotopy equivalent but not homeomorphic.

Let $X=\mathbb{R}^{2} \backslash\{\mathbf{0}\}$ be the punctured plane with the subspace topology. This has the same cardinality as $\mathbb{S}^{1}$ since both have the same cardinality as $\mathbb{R}$. They are not homeomorphic. The circle is compact by Heine-Borel, the punctured plane is not compact (also by Heine-Borel). Define $f: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2} \backslash\{\mathbf{0}\}$ to be the inclusion map, $f(\mathbf{x})=\mathbf{x}$. Define $g: \mathbf{R}^{2} \backslash\{\mathbf{0}\} \rightarrow \mathbb{S}^{1}$ via $g(\mathbf{x})=\mathbf{x} /\|\mathbf{x}\|_{2}$, the normalization map. Since $\mathbf{0} \notin \mathbb{R}^{2} \backslash\{\mathbf{0}\}$ this function is well-defined and continuous. We have $g \circ f$ is the identity function on $\mathbb{S}^{1}$, so it is homotopic to it. $f \circ g$ is the function sending $\mathbf{x} \neq \mathbf{0}$ to $\mathbf{x} /\|\mathbf{x}\|_{2}$. This is homotopic to the identity on $\mathbb{R}^{2} \backslash\{\mathbf{0}\}$, define $H$ via:

$$
\begin{equation*}
H(\mathbf{x}, t)=(1-t) \frac{\mathbf{x}}{\|\mathbf{x}\|_{2}}+t \mathbf{x} \tag{37}
\end{equation*}
$$

which is a homotopy between $f \circ g$ and the identity.
Let's modify our constraints. What if we have compact subsets of the plane? Could compact subsets of the same cardinality be homotopy equivalent but not homeomorphic? Consider $X \subseteq \mathbb{R}^{2}$ defined by:

$$
\begin{equation*}
X=\left\{\mathbf{x} \in \mathbb{R}^{2} \left\lvert\, \frac{1}{2} \leq\|\mathbf{x}\|_{2} \leq 1\right.\right\} \tag{38}
\end{equation*}
$$



Figure 7: Homotopy Equivalence from the Punctured Plane to $\mathbb{S}^{1}$

This is the closed annulus in the plane. By Heine-Borel it is compact, and it too has the same cardinality as $\mathbb{S}^{1}$. The circle and the closed annulus are also homotopy equivalent, but not homeomorphic. To see this, intuively, if we remove two points from $\mathbb{S}^{1}$ we end up with two pieces. If we remove two pieces from $X$ we still have one piece. The two spaces are homotopy equivalent, the same functions used with the punctured plane work. This is shown in Fig. 8.


Figure 8: Homotopy Equivalence Between $\mathbb{S}^{1}$ and an Annulus

The annulus looks two dimensional, the circle is one dimensional (whatever this means). You modify your question. If both subsets are compact and have the same dimension, does homotopy equivalence imply homeomorphic? Great question! This is one of the most famous conjectures of topology, the Poincaré conjecture. If $(X, \tau)$ is a three dimensional manifold (locally the space looks just like $\mathbb{R}^{3}$ ) that is compact and homotopy equivalent to $\mathbb{S}^{3}$, the three dimensional sphere that lives as a subspace of $\mathbb{R}^{4}$, is $(X, \tau)$ homeomorphic to $\mathbb{S}^{3}$ ? The answer is yes, but this took about 100 years to solve.

