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1 Finite Products

Continuing with our trend of building new topological spaces, thus far we have
subspaces and quotients. If (X, τX) and (Y, τY ) are topological spaces, it is
possible to put a topology on the Cartesian product X × Y in a way that
respects the topologies τX and τY . It is somewhat natural to hope that the set
τ̃X×Y defined by:

τ̃X×Y = {U × V ⊆ X × Y | U ∈ τX and V ∈ τY } (1)

would be a topology on X × Y , but it usually is not. Consider the real line R
with the standard topology τR. This has a basis B consisting of open intervals of
the form (a, b) for all a, b ∈ R. The product R×R should just be the Euclidean
plane R2, but open sets of the form (a, b) × (c, d) are open rectangles. The
product of more general open subsets U ,V ⊆ R could not possibly form an open
disk in the plane, even though we want an open disk to be, well, open.

The set τ̃X×Y is nearly a topology. The empty set is contained in it since
∅ = ∅ × ∅. The entire Cartesian product is an element since X ∈ τX and
Y ∈ τY , hence X × Y ∈ τ̃X×Y . It is also closed under intersections since:(

U0 × V0
)
∩
(
U1 × V1

)
=
(
U0 ∩ U1

)
×
(
V0 ∩ V1

)
(2)

and this is an element of τ̃X×Y . What fails is the union property. Again, think
of R×R. The union of two rectangles does not need to be a rectangle. Moreover,
open subsets of R2 such as the open unit disk can not be written in the form
U × V for open subsets U ,V ⊆ R. To ensure the product topology is indeed a
topology, we need to take the topology generated from τ̃X×Y .

Definition 1.1 (Product Topology of Two Topologies) The product topol-
ogy of two topologies τX and τY on sets X and Y , respectively, is the topology
on X × Y generated by the set B defined by:

B = {U × V ⊆ X × Y | U ∈ τX and V ∈ τY } (3)

This is denoted τX×Y . �
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Figure 1: Open Subsets of the Plane

Theorem 1.1. If (X, τX) and (Y, τY ) are topological spaces, and if τX×Y is
the product topology of τX and τY , then (X × Y, τX×Y ) is a topological space.

Proof. The product topology τX×Y is a generated topology, by definition, which
is hence a topology, so (X × Y, τX×Y ) is a topological space.

The product of two topological spaces better give us the right topologies on
familiar spaces, otherwise its useless.

Theorem 1.2. If τR×R is the product topology of τR and τR, and if τR2 is
the standard Euclidean topology on R2, then (R2, τR2) and (R × R, τR×R) are
homeomorphic.

Proof. We simply must prove the topologies τR2 and τR×R are the same set,
meaning the identity function id : R2 → R × R is a homeomorphism. The
standard topology on R2 is generated by the Euclidean metric:

d(x, y) = ||x− y||2 (4)

The topology of R × R is generated by open rectangles, which in turn can be
generated by open squares, and open squares are the open balls in the max
metric:

dmax(x, y) = max(|x0 − y0|, |x1 − y1|) (5)

But the Euclidean metric and the max metric are topologically equivalent met-
rics, meaning they produce the same topologies. So, we’re done.

Definition 1.2 (Projection Maps) The projection map of the Cartesian
product X × Y onto X is the function projX : X × Y → X defined by
projX

(
(x, y)

)
= x. The projection map of X × Y onto Y is defined by projY :

X × Y → Y , projY
(
(x, y)

)
= y. �

Projections are continuous.
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Theorem 1.3. If (X, τX) and (Y, τY ) are topological spaces, and if (X ×
Y, τX×Y ) is the product space, then projX : X×Y → X and projY : X×Y → Y
are continuous.

Proof. Let U ∈ τX and V ∈ τY . Then by the definition of the projection map,
proj−1X [U ] = U × Y , and U × Y ∈ τX×Y , so projX is continuous. Similarly,
proj−1Y [V] = X × V, and X × V ∈ τX×Y , so projY is continuous.

Theorem 1.4. If (X, τX) and (Y, τY ) are topological spaces, and if (X ×
Y, τX×Y ) is the product space, then projX : X×Y → X and projX : X×Y → Y
are open maps.

Proof. Let W ∈ τX×Y . Since τX×Y is generated by the basis B defined by:

B = {U × V | U ∈ τX and V ∈ τY } (6)

there is some collection O ⊆ B such that W =
⋃
O. But for each U ×V ∈ O we

have projX [U ×V] = U and projY [U ×V] = V. So then projX [W] is the union of
open sets in X, and projY [W] is the union of open sets in Y , so projX [W] ∈ τX
and projY [W] ∈ τY . That is, projX and projY are open maps.

Unlike quotients, which preserve very few properties, products preserve quite a
lot of properties.

Theorem 1.5. If (X, τX) and (Y, τY ) are Fréchet topological spaces, then (X×
Y, τX×Y ) is a Fréchet topological space.

Proof. Let (x0, y0), (x1, y1) ∈ X × Y with (x0, y0) 6= (x1, y1). Then either
x0 6= x1 or y0 6= y1. Suppose x0 6= x1. The proof is symmetric if y0 6= y1. Since
(X, τX) is a Fréchet topological space, and x0 6= x1, there exists U ,V ∈ τX such
that x0 ∈ U , x0 /∈ V, x1 ∈ V, and x1 /∈ U . But then U × Y and V × Y are
open sets such that (x0, y0) ∈ U × Y , (x0, y0) /∈ V × Y , (x1, y1) ∈ V × Y , and
(x1, y1) /∈ U × Y . Hence, (X × Y, τX×Y ) is a Fréchet topological space.

Theorem 1.6. If (X, τX) and (Y, τY ) are Hausdorff topological spaces, then
(X × Y, τX×Y ) is a Hausdorff topological space.

Proof. Let (x0, y0), (x1, y1) ∈ X × Y with (x0, y0) 6= (x1, y1). Then either
x0 6= x1 or y0 6= y1. Suppose x0 6= x1, the proof is symmetric if y0 6= y1.
But (X, τX) is Hausdorff, so there are opens sets U ,V ∈ τX such that x0 ∈ U ,
x1 ∈ V, and U ∩ V = ∅. But then U × Y and V × Y are disjoint open sets such
that (x0, y0) ∈ U × Y and (x1, y1) ∈ V × Y . Therefore (X × Y, τX×Y ) is a
Hausdorff topological space.

Theorem 1.7. If (X, τX) and (Y, τY ) are first-countable topological spaces,
then (X × Y, τX×Y ) is first-countable.

Proof. Let (x, y) ∈ X × Y . Since x ∈ X and (X, τX) is first-countable, there
is a countable neighborhood basis BX ⊆ τX of x. Since y ∈ Y and (Y, τY )
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is first-countable, there is a countable neighborhood basis BY ⊆ τY of y. Let
B ⊆ τX×Y be defined as:

B = {U × V ∈ τX×Y | U ∈ BX and V ∈ BY } (7)

Since BX and BY are countable, so is B. Since x ∈ U for all U ∈ BX and
y ∈ V for all V ∈ BY , we have that (x, y) ∈ U × V for all U × V ∈ B. We
now need to show that B is a neighborhood basis of (x, y). Let W ∈ τX×Y
be a set containing (x, y). Then, by the definition of the product topology,
there is a subset O ⊆ τX×Y such that W =

⋃
O and all elements of O are

of the form U × V with U ∈ τX and V ∈ τY . But (x, y) ∈ W, so there is an
element U × V ∈ O with (x, y) ∈ U × V. Then x ∈ U and y ∈ V. But BX
is a neighborhood basis of x, so there is a Ũ ∈ BX such that Ũ ⊆ U . But BY
is a neighborhood basis of y so there is a Ṽ ∈ BY such that Ṽ ⊆ V. But then
Ũ × Ṽ is an element of B such that Ũ × Ṽ ⊆ U × V, and since U × V ⊆ W, we
have Ũ × Ṽ ⊆ W. Hence, B is a countable neighborhood basis of (x, y) and
(X × Y, τX×Y ) is first-countable.

Theorem 1.8. If (X, τX) and (Y, τY ) are second-countable topological spaces,
then (X × Y, τX×Y ) is second-countable.

Proof. Since (X, τX) is second-countable, there is a countable basis BX for τX .
Since (Y, τY ) is second-countable, there is a countable basis BY for τY . Let B
be defined by:

B = {U × V | U ∈ BX and V ∈ BY } (8)

Then B has a cardinality bounded by N×N, which is countable. We now need
to prove B is a countable basis of τX×Y . To do this it suffices to show that any
open set W ∈ τX×Y can be written as W =

⋃
O for some set O ⊆ B. Define O

via:
O = {U × V ∈ B | U × V ⊆ W } (9)

Then by definition of O we have that
⋃
O ⊆ W. Let’s reverse this. Let (x, y) ∈

W. Then, since projection maps are open maps, x ∈ projX(W), which is
an open set. Since BX is a basis there is some U ∈ BX such that x ∈ U
and U ⊆ projX(W). Similarly there is some V ∈ BY such that y ∈ V and
V ⊆ projY (W). But then (x, y) ∈ U × V and U × V ⊆ W. Morever, since
U ∈ BX and V ∈ BY , we have that U × V ∈ B. But then U × V ∈ O, and hence
(x, y) ∈

⋃
O. That is, W ⊆

⋃
O, and therefore W =

⋃
O. So B is a countable

basis.

The way to often think of product spaces (X × Y, τX×Y ) is to take a copy of
X and attach it to each y ∈ Y . Similarly, you could think of attaching a copy
of Y to each x ∈ X. This mode of thinking makes it easier to visualize certain
product spaces.

Example 1.1 The plane R2 can be thought of as attaching a copy of R to each
real number x ∈ R. That is, think of R as a horizontal line, and at each x ∈ R
attach a copy of R that is directed vertically. The result is R2. �
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Figure 2: The Torus T2

Example 1.2 Letting S1 denote the unit circle in the plane, R×S1 is a cylinder.
At every point x ∈ S1, attach a copy of the real line that is directed upwards
out of the plane. The result is a cylinder in R3. �

Example 1.3 The space S1×S1 is the torus, and this is denoted T2. As a set it
lives as a subset of R4 since S1 ⊆ R2, and hence S1×S1 ⊆ R4. However, it is far
easier to visualize this space as a subset of R3 using our intuition of attaching
spaces to points. At every point on the first circle S1 we attach a copy of the
second circle S1. The result is a circle of circles, which is the torus, and this
can be embedded into R3. This is done in Fig. 2. �

Products also preserve the property of being metrizable. We’ve seen this before
when we constructed several equivalent metrics on R2 using the standard metric
on R.

Theorem 1.9. If (X, τX) and (Y, τY ) are metrizable topological spaces, then
(X × Y, τX×Y ) is metrizable.

Proof. Since (X, τX) is metrizable, there is a metric dX on X that induces τX .
Since (Y, τY ) is metrizable, there is a metric dY on Y that induces τY . Let
dX×Y be defined by:

dX×Y
(
(x0, y0), (x1, y1)

)
= dX(x0, x1) + dY (y0, y1) (10)

Then dX×Y is a metric. It is positive-definite, symmetric, and satisfies the
triangle inequality since dX and dY do. It also induces τX×Y . A set is open
with the metric dX×Y if and only if it is the union of open balls with the
dX×Y metric. Since sets of the form U × V ∈ τX×Y with U ∈ τX and V ∈ τY
form a basis for τX×Y , it suffices to show that all U × V are the union of open
balls. For all (x, y) ∈ U × V, since dX induces τX , there is an rx > 0 such

that B
(X, dX)
rx (x) ⊆ U . Since dY induces τY , there is an ry > 0 such that

B
(Y, dY )
ry (y) ⊆ V. Let r(x, y) = min(rx, ry). Then B

(X×Y, dX×Y )
r(x, y)

(
(x, y)

)
is a

subset of U × V. For let (a, b) ∈ B(X×Y, dX×Y )
r(x, y)

(
(x, y)

)
. But then:

dX(a, x) ≤ dX(a, x) + dY (b, y) = dX×Y
(
(a, x), (b, y)

)
< r(x, y) ≤ rx (11)
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so a ∈ B(X, dX)
rx (x), and hence a ∈ U . Similarly:

dY (b, y) ≤ dX(a, x) + dY (b, y) = dX×Y
(
(a, x), (b, y)

)
< r(x, y) ≤ ry (12)

so b ∈ B(Y, dY )
ry (y), and hence b ∈ V. So (a, b) ∈ U ×V. Let W(x, y) be the r(x, y)

ball in (X × Y, dX×Y ) centered at (x, y) for all (x, y) ∈ U × V. Then, since
(x, y) ∈ W(x, y), we have:

U × V ⊆
⋃

(x, y)∈U×V

W(x, y) (13)

But also W(x, y) ⊆ U × V for all (x, y) ∈ U × V, so:⋃
(x, y)∈U×V

W(x, y) ⊆ U × V (14)

Hence U ×V is the union of open balls in the dX×Y metric. That is, an open set
in τX×Y is the union of open balls, meaning τX×Y ⊆ τdX×Y

. We must reverse
this. This is, we must show that the union of open balls is open with respect
to τX×Y . To do this it suffices to show that open balls with the dX×Y metric
are open in the topology τX×Y , since then the union of open balls would be the
union of open sets, which is therefore open. So let (x, y) ∈ X × Y and r > 0.

Let (a, b) ∈ B(X×Y, dX×Y )
r

(
(x, y)

)
. Let r(a, b) = 1

2

(
r− dX×Y

(
(a, x), (b, y)

)
. Let

Ua = B
(X, dX)
r(a, b)

(x) and Vb = B
(Y, dY )
r(a, b)

(y). Then Ua × Vb ⊆ B
(X×Y, dX×Y )
r

(
(x, y)

)
.

For if (x0, y0) ∈ Ua × Vb, then:

dX×Y
(
(x0, y0), (x, y)

)
≤ dX×Y

(
(x0, y0), (a, b)

)
+ dX×Y

(
(a, b), (x, y)

)
(15)

= dX(x0, a) + dY (y0, b) + dX×Y
(
(a, b), (x, y)

)
(16)

<
1

2

(
r − dX×Y

(
(a, b), (x, y)

))
+

1

2

(
r − dX×Y

(
(a, b), (x, y)

))
+ dX×Y

(
(a, b), (x, y)

)
(17)

= r (18)

So B
(X×Y, τX×Y )
r

(
(x, y)

)
can be written as the union of all such Ua × Vb for all

(a, b) in the set, meaning open balls with the dX×Y metric are open. So a set is
open in τX×Y if and only if it is open with respect to dX×Y , so dX×Y induces
the topology and (X × Y, τX×Y ) is metrizable.

Products can be performed for any finite collection of topological spaces. We
replace X × Y with

∏
n∈ZN

Xn, given a collection of N ∈ N topological spaces
(Xn, τn). The topology is generated by sets of the form

∏
n∈ZN

Un where Un ∈
τn for all n ∈ ZN . All of the previous theorems still hold for finite products,
and the proofs are done by induction. (Try it yourself, I can’t prove everything
for you!)
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� The finite product of Fréchet spaces is Fréchet.

� The finite product of Hausdorff spaces is Hausdorff.

� The finite product of first-countable spaces is first-countable.

� The finite product of second-countable spaces is second-countable.

� The finite product of metrizable spaces is metrizable.

The product of sequential spaces does not need to be sequential.

2 Infinite Products

When we go from the finite world to the infinite things get a bit problematic.
First, how do we even topologize an infinite product? There are two ways:
the obvious way, and the correct one. It took me a long time to realize that
the obvious way is not the correct one. I’ve a few examples up my sleeves, so
hopefully you’ll realize sooner than I did. The obvious way is the box topology.
Given a set I such that for all α ∈ I we have that (Xα, τα) is a topological
space, we can form the following basis BBox for the product:

BBox =
{ ∏
α∈I
Uα | Uα ∈ τα for all α ∈ I

}
(19)

This should definitely be considered the obvious way. We stole our idea for
finite products and just generated a topology using this. This idea is horrible,
unfortunately. The set R∞ =

∏∞
n=0 R is the set of all sequences in R. The

function f : R → R∞ defined by f(x) = a : N → R where an = x for all n ∈ N
certainly seems like a simple enough function. Intuitively, this is the function:

f(x) = (x, x, x, . . . , x, . . . ) (20)

Note that in each component the function is indeed continuous. That is, fn :
R → R defined by fn(x) = f(x)n is just fn(x) = x, which is continuous. With
respect to the box topology, f is nowhere continuous. Talk about aweful! This
is one of the simplest functions one could describe from R to R∞ and yet the
box topology says it’s everywhere discontinuous.

If you were given a function f : R→ R3 from calculus like:

f(t) =
(
t2 + 1, sin(t)et, t3 − t

)
(21)

would you bother checking that the pre-image of an open set is open to determine
f is continuous? Of course not, you’d note that in the x coordinate we have
x(t) = t2 +1, which is a polynomial, so it is continuous. In the y coordinate you
have y(t) = sin(t)et, the product of continuous functions, so continuous. In the
z coordinate you have z(t) = t3 − t, another polynomial. Since f is continuous
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in all of its components, you’d rightly conclude that f is continuous. This is the
way continuous functions should work with infinite products as well, but the
box topology lacks such a feature. The problem is the box topology is way to
big. We need to restrict which sets we consider open if we want a nice topology
on the product. Let’s try the following. Define BProd as:

BProd =
{ ∏
α∈I
Uα | Uα ∈ τα and Uα = Xα for all but finitely many α ∈ I

}
(22)

Let τBox and τProd be the topologies generated from BBox and BProd, respec-
tively. Hopefully from the definition it is clear that τProd ⊆ τBox. The product
topology is formed in a similar manner to the box topology, but with a major
restriction on which sets we use to generate our topology.

The product topology is precisely the topology that makes it so that a function
f : Y →

∏
α∈I Xα, with respect to a topological space (Y, τY ), is continuous if

and only if fα : Y → Xα, the component function, is continuous for all α ∈ I.
You will prove this in your homework.

Note that the box topology and the product topology are the same for finite
products. It’s only in the infinite world where things differ. The product topol-
ogy also has the following nice feature.

Theorem 2.1. If X is a countable set of metrizable spaces (Xn, τn), if τ∏ is
the product topology on

∏
n∈NXn, then (

∏
n∈NXn, τ∏) is metrizable.

Proof. For each space (Xn, τn) there is a metric dn that induces the topology.
These metrics may be unbounded, so define ρn to be the topologically equiva-
lence metric given by:

ρn(x, y) =
dn(x, y)

1 + dn(x, y)
(23)

Define d∏ by:

d∏(a, b) =

∞∑
n=0

ρn(an, bn)

2n
(24)

(Remember, a ∈
∏
n∈NXn is a sequence a : N →

⋃
n∈NXn such that an ∈ Xn

for all n ∈ N). This sum converges since each ρn is bounded by 1, so we have a
valid function on

∏
n∈NXn. It is also metric. It is positive-definite, symmetric,

and satisfies the triangle inequality since all of the ρn do. The product topology
has a subbasis of open sets of the form:

Ũ =

∞∏
n=0

Un (25)

where Un ∈ τn for all n ∈ N, and Un = Xn for all but one n ∈ N (this is a
subbasis, not a basis). So we need to just show that these subbasis elements
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are open with respect to d∏. Given a ∈ Ũ , an ∈ Un ∈ τn, since ρn induces

τn, there is an r′ > 0 such that B
(Xn, ρn)
r (an) ⊆ Un. Let r = r′/2n. But then

B
(
∏

nXn, d∏)
r (a) ⊆ Ũ since given b ∈ B(

∏
nXn, d∏)

r (a), we have:

1

2n
ρn(an, bn) ≤

∞∑
k=0

ρk(ak, bk)

2k
< r =

r′

2n
(26)

and hence ρn(an, bn) < r′, so bn ∈ Un, and therefore b ∈ Ũ . Next, to show open
balls are open. Let r > 0 and a an element of the product set and choose N ∈ N
such that 1/2N < r/2. Let Un be the r/4 ball centered at an for all n ∈ ZN , and
Un = Xn for all n ≥ N . Then

∏
n∈N Un ∈ τ∏ by the definition of the product

topology. But also
∏
n∈N Un ⊆ B

(
∏

nXn, d∏)
r (a). For if b ∈

∏
n∈N Un, then:

d∏(a, b) =

∞∑
n=0

ρn(an, bn)

2n
(27)

=

N−1∑
n=0

ρn(an, bn)

2n
+

∞∑
n=N

ρn(an, bn)

2n
(28)

<

N−1∑
n=0

r

4

1

2n
+

∞∑
n=N

1

2n
(29)

<
r

2
+
r

2
(30)

= r (31)

So we can find an open set containing a that fits entirely inside of the r ball
centered at a. This can be modified for all elements of the r ball centered at
a, meaning this set can be written as the union of open sets, which is therefore
open. So open balls with respect to d∏ are open in τ∏, and open sets in τ∏ are
open with respect to d∏. Hence d∏ induces the topology and (

∏
n∈NXn, τ∏)

is metrizable.

The claim is not true for uncountable products. The product of uncountably
many metrizable spaces need not be first-countable, and hence cannot possibly
be metrizable.

3 Homotopy and Homotopy Equivalence

Homeomorphism is the main notion of sameness for topological spaces. If
(X, τX) and (Y, τY ) are homeomorphic, then topologically they are indistin-
guishable and may as well be regarded as the same topological space. There
is another notion of same that is far weaker, but also very intuitive and picto-
rial. This idea is described by homotopies. Homotopy is motivated by curves
in the plane. Suppose we have f : [0, 1] → R and g : [0, 1] → R defined
by f(x) = exp(x) and g(x) = x3. We visualize these functions as curves
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f(x) = exp(x)

g(x) = x3

H(x, t)

Figure 3: Homotopy Between Curves

α, β : [0, 1] → R2 defined by α(t) =
(
t, f(t)

)
and β(t) =

(
t, g(t)

)
. A ho-

motopy from the curve α to the curve β is a way of continuously deforming α
into β. In the plane this can be done by dragging the point α(t) to the point
β(t) along the straight line between them for all t ∈ [0, 1]. This is shown in
Fig. 3. We use this to motivate homotopies in general. It should be a way of
continuously deforming one function into another.

Definition 3.1 (Homotopy) A homotopy from a continuous function f0 :
X → Y to a continuous function f1 : X → Y between topological spaces
(X, τX) and (Y, τY ) is a continuous function H : X × [0, 1] → Y , where [0, 1]
has the subspace topology from R and X× [0, 1] has the product topology, such
that for all x ∈ X we have H(x, 0) = f0(x) and H(x, 1) = f1(x). �

Some spaces, such as Euclidean spaces, are too nice and have the property that
all continuous functions are homotopic to one another.

Theorem 3.1. If (X, τ) is a topological space, if τRn is the standard Euclidean
topology on Rn, and if f0, f1 : X → Rn are continuous functions, then there is
a homotopy H : X × [0, 1]→ Rn between f0 and f1.

Proof. Define H : X × [0, 1]→ Rn via:

H(x, t) = (1− t)f0(x) + tf1(x) (32)
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Since multiplication and addition is continuous in Rn, and since f0 and f1 are
continuous, H is continuous. Moreover, for all x ∈ X we have H(x, 0) = f0(x)
and H(x, 1) = f1(x), so H is a homotopy between f0 and f1.

Homotopic is an equivalence relation on the set of all continuous functions be-
tween (X, τX) and (Y, τY ).

Theorem 3.2. If (X, τX) and (Y, τY ) are topological spaces, and if f : X → Y
is continuous, then f is homotopic to itself.

Proof. Let H : X × [0, 1] → Y be defined by H(x, t) = f(x). Then, since f is
continuous, so is H. However H(x, 0) = f(x) and H(x, 1) = f(x), so H is a
homotopy from f to itself.

Theorem 3.3. If (X, τX) and (Y, τY ) are topological spaces, and if f0, f1 :
X → Y are continuous functions such that f0 is homotopic to f1, then f1 is
homotopic to f0.

Proof. Since f0 is homotopic to f1 there is a homotopy H : X× [0, 1]→ Y such
that H(x, 0) = f0(x) and H(x, 1) = f1(x) for all x ∈ X. Define G : X×[0, 1]→
Y via:

G(x, t) = H(x, 1− t) (33)

Since h : [0, 1] → [0, 1] defined by h(t) = 1 − t is continuous, and since H
is continuous, G is continuous as well. But G(x, 0) = H(x, 1) = f1(x) and
G(x, 1) = H(x, 0) = f0(x). So G is a homotopy from f1 to f0.

Transitivity requires the pasting lemma, a fundamental result about building
continuous functions by gluing two functions together.

Theorem 3.4 (The Pasting Lemma). If (X, τX) and (Y, τY ) are topological
spaces, if A,B ⊆ X are closed subsets, if X = A ∪ B, and if f0 : A → Y and
f1 : B → Y are continuous functions with the subspace topologies on A and
B such that for all x ∈ A ∩ B it is true that f0(x) = f1(x), then the function
f : X → Y defined by:

f(x) =

{
f0(x) x ∈ A
f1(x) x ∈ B

(34)

is continuous.

Proof. First, f is a function. It is well-defined since on A ∩ B the functions f0
and f1 agree. Second, for all x ∈ X there is a y ∈ Y such that f(x) = y since
A ∪ B = X, so both A and B cover X. Now to show it is continuous. Let
D ⊆ Y be closed. Then since f0 is continuous, f−10 [D] is closed. But f1 is also
continuous, so f−11 [D] is closed. But then:

f−1[D] = f−10 [D] ∪ f−11 [D] (35)

Hence f−1[D] is the union of two closed sets, which is closed. Therefore, f is
continuous.
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Figure 4: Homotopy Between Continuous Functions

Theorem 3.5. If (X, τX) and (Y, τY ) are topological spaces, if f0, f1, f2 : X →
Y are continuous, if f0 is homotopic to f1, and if f1 is homotopic to f2, then
f0 is homotopic to f2.

Proof. Since f0 is homotopic to f1, there is a homotopy H : X× [0, 1]→ Y such
that H(x, 0) = f0(x) and H(x, 1) = f1(x). Since f1 and f2 are homotopic, there
is a homotopyG : X×[0, 1]→ Y such thatG(x, 0) = f1(x) andG(x, 1) = f2(x).
Define F : X × [0, 1]→ Y via:

F (x, t) =

{
H(x, 2t) 0 ≤ t ≤ 1

2

G(x, 2t− 1) 1
2 ≤ t ≤ 1

(36)

This is well-defined since F (t, 1
2 ) = H(x, 1) = G(x, 0) = f1(x) for all x ∈ X. It

is also continuous by the pasting lemma, since both H and G are continuous.
But also F (x, 0) = H(x, 0) = f0(x) and F (x, 1) = G(x, 1) = f2(x), so F is a
homotopy between f0 and f2.

For the more general picture with (X, τX) and (Y, τY ) being arbitrary topo-
logical spaces, we use Fig. 4 for guiding intuition. In the case (X, τX) =
([0, 1], τ[0, 1]), the closed unit interval with the subspace topology, we again
think of curves in the space (Y, τY ). See Fig. 5

[0, 1]

Y
f

g

H

Figure 5: Homotopy Between Curves

Think of the circle S1 with the subspace topology from R2. Given two continuous
functions f0, f1 : S1 → S1, do you think it must be true that f0 and f1 are
homotopic, like was the case with Rn? Let’s alter the question slightly. Consider
the functions f0, f1 : [0, 1] → S1 defined by f0(t) =

(
cos(πt), sin(πt)

)
and

f1(t) =
(

cos(πt), − sin(π(t))
)
. These functions start and end at the same points

on the circle. Can you deform f0 into f1 while keeping the endpoints fixed and
staying inside the circle? If you could leave the circle, the problem would be

12



Figure 6: Two Curves on S1

easy, just do the straight line homotopy H(s, t) = (1− t)f0(s)+ tf1(s), but that
is not the question. You may not change the endpoints and you can’t leave the
circle. Hopefully this seems impossible, and because this is impossible it is not
true that all functions f0, f1 : S1 → S1 are homotopic.

The feature Euclidean space has is that it is contractible, it can be shrunk
down continuously to a point. The circle has a large hole in it and cannot
be collapsed to a point. To make this precise, now is the time to talk about
homotopy equivalences. First, one more definition.

Definition 3.2 (Homotopy Inverse) A homotopy inverse for a continuous
function f : X → Y from a topological space (X, τX) to a topological space
(Y, τY ) is a continuous function g : Y → X such that g◦f : X → X is homotopic
to the identity function idX and f ◦ g : Y → Y is homotopic to the identity
function idY . �

Definition 3.3 (Homotopy Equivalence Topological Spaces) Homotopy
equivalent topological spaces are topological spaces (X, τX) and (Y, τY ) such
that there is a continuous function f : X → Y that has a homotopy inverse
g : Y → X. f and g are called homotopy equivalences. �

Homotopy equivalent is a new notion of sameness for topological spaces, but
it is far weaker than homeomorphic. It is also extremely visual and intuitive,
once you get the idea. In homeomorphisms you are allowed to continuously
and bijectively move your space around. With homotopy equivalence you are
allowed to do a lot more. You can squeeze points together, stretch points out,
you just can’t tear your space. Homeomorphisms are, in particular, homotopy
equivalences.

Theorem 3.6. If (X, τX) and (Y, τY ) are homeomorphic topological spaces,
then they are homotopy equivalent.

Proof. Since (X, τX) and (Y, τY ) are homeomorphic, there is a homeomorphism
f : X → Y . But then f is continuous, bijective, and f−1 is continuous. But
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then f−1 is a homotopy inverse of f since it is continuous and f ◦ f−1 = idY
and f−1 ◦ f = idX . But any continuous function is homotopic to itself, so if
f ◦ f−1 = idY , then f ◦ f−1 is homotopic to idY . Similarly f−1 ◦ f is homotopic
to idX , and therefore f and f−1 are homotopy inverses of each other, meaning
(X, τX) and (Y, τY ) are homotopy equivalent.

This theorem does not reverse.

Theorem 3.7. Rn, with the standard topology, is homotopy equivalent to { 0 }
with the subspace topology.

Proof. Define f : Rn → { 0 } via f(x) = 0. This is a constant function, so it is
continuous. Let g : { 0 } → Rn be defined by g(0) = 0. Since g is a constant
function, it is continuous. But (g ◦ f)(x) = 0, and this is homotopic to idRn

with the homotopy H(x, t) = tx. Also, (f ◦ g)(0) = 0, so f ◦ g = id{ 0 }, so f ◦ g
is certainly homotopic to the identity since it is equal to it. Hence f and g are
homotopy inverses of each other.

This idea gets a name.

Definition 3.4 (Contractible Topological Space) A contractible topologi-
cal space is a topological space (X, τ) that is homotopy equivalent to a single
point { 0 }. �

Rn is not homeomorphic to a point, homeomorphisms must be bijective. This
shows homotopy equivalent is much weaker. But even if (X, τX) and (Y, τY )
are topological spaces where X and Y have the same cardinality, it is possible
for these spaces to be homotopy equivalent but not homeomorphic.

Let X = R2 \ {0 } be the punctured plane with the subspace topology. This
has the same cardinality as S1 since both have the same cardinality as R. They
are not homeomorphic. The circle is compact by Heine-Borel, the punctured
plane is not compact (also by Heine-Borel). Define f : S1 → R2 \ {0 } to be
the inclusion map, f(x) = x. Define g : R2 \ {0 } → S1 via g(x) = x/||x||2,
the normalization map. Since 0 6∈ R2 \ {0 } this function is well-defined and
continuous. We have g ◦ f is the identity function on S1, so it is homotopic to
it. f ◦ g is the function sending x 6= 0 to x/||x||2. This is homotopic to the
identity on R2 \ {0 }, define H via:

H(x, t) = (1− t) x

||x||2
+ tx (37)

which is a homotopy between f ◦ g and the identity.

Let’s modify our constraints. What if we have compact subsets of the plane?
Could compact subsets of the same cardinality be homotopy equivalent but not
homeomorphic? Consider X ⊆ R2 defined by:

X =
{

x ∈ R2 | 1

2
≤ ||x||2 ≤ 1 } (38)
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Figure 7: Homotopy Equivalence from the Punctured Plane to S1

This is the closed annulus in the plane. By Heine-Borel it is compact, and
it too has the same cardinality as S1. The circle and the closed annulus are
also homotopy equivalent, but not homeomorphic. To see this, intuively, if we
remove two points from S1 we end up with two pieces. If we remove two pieces
from X we still have one piece. The two spaces are homotopy equivalent, the
same functions used with the punctured plane work. This is shown in Fig. 8.

S1

X

Figure 8: Homotopy Equivalence Between S1 and an Annulus

The annulus looks two dimensional, the circle is one dimensional (whatever
this means). You modify your question. If both subsets are compact and have
the same dimension, does homotopy equivalence imply homeomorphic? Great
question! This is one of the most famous conjectures of topology, the Poincaré
conjecture. If (X, τ) is a three dimensional manifold (locally the space looks just
like R3) that is compact and homotopy equivalent to S3, the three dimensional
sphere that lives as a subspace of R4, is (X, τ) homeomorphic to S3? The answer
is yes, but this took about 100 years to solve.
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