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1 Regular and Normal Spaces

The Hausdorff condition is a very mild one and most spaces you’ll encounter
are Hausdorff. Metric spaces have far stronger separation properties, and these
ideas are useful in the general topological setting as well. The new ideas are
regular, normal, completely Hausdorff, completely regular, completely normal,
and perfectly normal. In this section we’ll discuss all of these ideas, show some
relations between them, and draw some pictures.

Definition 1.1 (Regular Topological Spaces) A regular topological space
is a topological space (X, τ) such that for all x ∈ X and for all closed subsets
C ⊆ X such that x 6∈ C, there are open sets U ,V ∈ τ such that x ∈ U , C ⊆ V,
and U ∩ V = ∅. �

Note: in analysis authors usually define regular to mean regular plus Fréchet.
That is, these authors state that a regular space is one where all singleton sets
{x } are closed, and such that all x ∈ X and closed C ⊆ X can be separated
by disjoint open sets. We are not adopting this definition. While many
regular spaces that are studied happen to also be Hausdorff, there are also
regular spaces that are not. If the space is Kolmogorov, however, then regular
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Figure 1: Regular Topological Space
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implies Fréchet. From many weeks ago, a Kolmogorov space is a topological
space (X, τ) such that for all x, y ∈ X with x 6= y, there is an open set U ∈ τ
such that either x ∈ U and y 6∈ U , or x 6∈ U and y ∈ U .

Theorem 1.1. If (X, τ) is a topological space, then it is a Kolmogorov space
if and only if for all x, y ∈ X with x 6= y there exists C ⊆ X that is closed such
that either x ∈ C and y /∈ C, or x /∈ C and y ∈ C.

Proof. Let x, y ∈ X and x 6= y. Suppose (X, τ) is a Kolmogorov topological
space. Then there is an open set U ∈ τ such that either x ∈ U and y /∈ U , or
x /∈ U and y ∈ U . But then C = X \ U is a closed set such that either x /∈ C
and y ∈ C, or x ∈ C and y /∈ C. Going the other way, suppose (X, τ) is such
that for all x, y ∈ X with x 6= y there is a closed set C ⊆ X such that either
x ∈ C and y /∈ C, or x /∈ C and y ∈ C. Then U = X \ C is an open set such that
either x /∈ U and y ∈ U , or x ∈ U and y /∈ U . Hence, (X, τ) is a Kolmogorov
topological space.

Theorem 1.2. If (X, τ) is a regular Kolmogorov topological space, then it is a
Hausdorff topological space.

Proof. Let x, y ∈ X, x 6= y. Since (X, τ) is Kolmogorov, there is a closed set
C ⊆ X such that either x ∈ C and y /∈ C, or x /∈ C and y ∈ C. Suppose x /∈ C
and y ∈ C, the proof is symmetric either way. But then x ∈ X and C ⊆ X is a
closed set such that x /∈ C. But (X, τ) is regular, so there are open sets U , V
such that x ∈ U , C ⊆ V, and U ∩ V = ∅. But y ∈ C, so y ∈ V. But then U and
V are disjoint open sets separating x and y. Hence, (X, τ) is Hausdorff.

Theorem 1.3. If (X, τ) is a regular Kolmogorov topological space, then it is a
Fréchet topological space.

Proof. Since regular Kolmogorov spaces are Hausdorff, and Hausdorff spaces
are Fréchet, we have that (X, τ) is a Fréchet topological space.

Theorem 1.4. If (X, τ) is a regular Fréchet topological space, then it is Haus-
dorff.

Proof. Fréchet implies Kolmogorov, so (X, τ) is a regular Kolmogorov space,
which is therefore Hausdorff.

Example 1.1 The Kolmogorov property is a very mild one, which justifies some
authors including it in the definition of regular. But, as we’ve defined, regular
does not imply Hausdorff by itself. The set Z2 = { 0, 1 } with the indiscrete
topology τ = { ∅, Z2 } is not Hausdorff, not Fréchet, and not Kolmogorov, but
it is regular. �

Example 1.2 (The Double Pointed Reals) The double pointed real space is
the topological space R×Z2, where R carries the standard Euclidean topology,
and Z2 carries the indiscrete topology. Intuitively, for every real number r ∈ R
you have another redundant copy r′ that is topologically indistinguishable from
r, even though r and r′ are techinically different. This space is regular, but it
is not Hausdorff. �
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Figure 2: Normal Topological Space

Theorem 1.5. If (X, τ) is a topological space, then it is regular if and only if
for all x ∈ X and U ∈ τ such that x ∈ U , there is an open set V ∈ τ such that
x ∈ V and Clτ (V) ⊆ U .

Proof. Suppose (X, τ) is regular and let x ∈ X and U ∈ τ be such that x ∈ U .
Since U is open, X \ U is closed. But x /∈ X \ U , so since (X, τ) is regular there
exists V,W ∈ τ such that x ∈ V, X \U ⊆ W, and V∩W = ∅. Now to prove that
Clτ (V) ⊆ U . SinceW is open and X \U ⊆ W, we have that X \W is closed and
X \W ⊆ U . But, since V ∩W = ∅, we have that V ⊆ X \W. Hence X \W is a
closed set that contains V and sits inside of U . But then Clτ (V) ⊆ X \W, and
hence Clτ (V) ⊆ U . Now, the other direction. Suppose for all x ∈ X, U ∈ τ such
that x ∈ U , there is a V ∈ τ with x ∈ V and Clτ (V) ⊆ U . Let x ∈ X and C ⊆ X
be closed and such that x /∈ C. Since C is closed, X \ C is open. But then there
is a U ∈ τ such that x ∈ U and Clτ (U) ⊆ X \ C. Let V = X \ Clτ (U). Then
V is open since it is the complement of a closed set. But by definition C ⊆ V
and U ∩ V = ∅. Hence U and V are disjoint open sets that separate x and C, so
(X, τ) is regular.

Definition 1.2 (Normal Topological Space) A normal topological space is
a topological space (X, τ) such that for all disjoint closed subsets C,D ⊆ X,
there are open sets U ,V ∈ τ such that C ⊆ U , D ⊆ V, and U ∩ V = ∅. �

Theorem 1.6. If (X, τ) is a second-countable and regular, then it is normal.

Proof. Let C,D be disjoint closed subsets of X. Since (X, τ) is second-countable
there is a countable basis B. For all x ∈ C, since (X, τ) is regular, there is an
open set Ux such that x ∈ Ux and Ux ∩ D = ∅. But since (X, τ) is regular and
x ∈ Ux, there is a Ũx such that x ∈ Ũx and Clτ (Ũx) ⊆ Ux. Similarly we can cover
D with sets Vy and Ṽy such that for all y ∈ D we have y ∈ Ṽy, Clτ (Ṽy) ⊆ V,
and Vy ∩ C = ∅. Let OC be defined by:

OC = {W ∈ B | W ⊆ Ũx for some x ∈ C } (1)
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and OD defined by:

OD = {W ∈ B | W ⊆ Ṽy for some y ∈ D } (2)

Since B is countable, both OC and OD are countable. But B is a basis, so OC and
OD are open covers of C and D, respectively. Let U : N→ OC and V : N→ OD
be surjections. The union over all Un covers C, and the union over Vn covers D,
but it is possible for these unions to overlap. We make them disjoint as follows.
Define U ′n by:

U ′n = Un \
n⋃
k=0

Clτ (Vk) (3)

and V ′n via:

V ′n = Vn \
n⋃
k=0

Clτ (Uk) (4)

Then U ′n and V ′n are the difference of a closed set from an open set, and hence
are all open. But now

⋃
n U ′n and

⋃
n V ′n are disjoint open sets that cover C and

D, respectively. Hence, (X, τ) is normal.

In a just world, there would be three types of separation properties and two
adjectives for these properties. There would be the three separation properties
Hausdorff, regular, and normal. The three properties with the adjective com-
pletely. And the three properties with the adjective perfectly. The adjective
completely should mean something similar for all three properties, and the ad-
jective perfectly should mean something similar for all three properties as well.
This is not the case, and life is not art, unfortunately.

In a just world, completely should mean every subspace has the property, per-
fectly should mean the separation property can replace open sets with continuous
functions. There is a reason this is not done. If it were, Hausdorff and com-
pletely Hausdorff would mean the same thing, regular and completely regular
would mean the same thing, and only normal and completely normal would be
different ideas. Let’s prove this. We’ve already done the Hausdorff case when
we studied subspaces, but let’s do it again. Why not.

Theorem 1.7. If (X, τ) is a Hausdorff topological space, if A ⊆ X, and if τA
is the subspace topology, then (A, τA) is a Hausdorff topological space.

Proof. Let x, y ∈ A with x 6= y. Then, since A ⊆ X, we have that x, y ∈ X are
distinct points. But (X, τ) is Hausdorff, so there are U ,V ∈ τ such that x ∈ U ,
y ∈ V, and U ∩ V = ∅. But then Ũ = A ∩ U and Ṽ = A ∩ V are open sets in
τA by the definition of the subspace topology, x ∈ Ũ , y ∈ Ṽ, and Ũ ∩ Ṽ = ∅. So
(A, τA) is Hausdorff.

Theorem 1.8. If (X, τ) is a regular topological space, if A ⊆ X, and if τA is
the subspace topology, then (A, τA) is regular.
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Proof. Let x ∈ A, C ⊆ A be closed with respect to τA, and x /∈ C. Then A \ C is
open in τA, so there is a U ∈ τ such that A \ C = A∩ U . Let C̃ = Clτ (C). Note,
this is closure with respect to τ , not τA. Since x ∈ U and C ∩ U = ∅, we have
that x 6∈ Clτ (C), hence x /∈ C̃. But (X, τ) is regular and C̃ is closed, being the
closure of C. So there are V,W ∈ τ such that x ∈ V, C̃ ⊆ W, and V ∩W = ∅.
But then Ṽ = V ∩ A and W̃ = W ∩ A are disjoint open sets in the subspace
topology that separate x and C. Hence, (A, τA) is regular.

There is no identical theorem for normal spaces. A subspace of a normal space
need not be normal. We give a new name to spaces with this property.

Definition 1.3 (Completely Normal Topological Space) A completely
normal topological space is a topological space (X, τ) such that for all A ⊆ X
it is true that (A, τA) is normal, where τA is the subspace topology. �

Theorem 1.9. If (X, τ) is completely normal, then it is normal.

Proof. If every subspace of (X, τ) is normal, then (X, τ) is normal since it is a
subspace of itself.

It is now extremely unfortunate that completely has a very different meaning
when placed in front of the words Hausdorff and regular.

Definition 1.4 (Completely Hausdorff Topological Space) A completely
Hausdorff topological space is a topological space (X, τ) such that for all x, y ∈
X with x 6= y there is a continuous function f : X → [0, 1] where [0, 1] has the
subspace topology, such that f(x) = 0 and f(y) = 1. That is, x ∈ f−1[{ 0 }]
and y ∈ f−1[{ 1 }]. �

Theorem 1.10. If (X, τ) is a completely Hausdorff topological space, then it
is a Hausdorff topological space.

Proof. Let x, y ∈ X, x 6= y, and let f : X → [0, 1] be a continuous function
such that f(x) = 0 and f(y) = 1. Let U = f−1

[
[0, 1

4 )
]

and V = f−1
[
( 3
4 , 1]

]
.

Since [0, 1
4 ) and ( 3

4 , 1] are open in the subspace topology, U and V are open.
But also, by definition, U ∩ V = ∅. Since f(x) = 0 we have x ∈ U and since
f(y) = 1 we have y ∈ V. So (X, τ) is Hausdorff.

Definition 1.5 (Completely Regular Topological Space) A completely
regular topological space is a topological space (X, τ) such that for all x ∈ X
and all closed C ⊆ X with x /∈ C there is a continuous function f : X → [0, 1],
where [0, 1] has the subspace topology, such that f(x) = 0 and for all y ∈ C we
have f(y) = 1. That is, x ∈ f−1[{ 0 }] and C ⊆ f−1[{ 1 }]. �

Theorem 1.11. If (X, τ) is a completely regular topological space, then it is
regular.

Proof. Let x ∈ X, C ⊆ X be closed, and x /∈ C. Since (X, τ) is completely
regular there is a continuous function f : X → [0, 1] such that x ∈ f−1[{ 0 }]
and C ⊆ f−1[{ 1 }]. Let U = f−1

[
[0, 1

4 )
]

and V = f−1
[
( 3
4 , 1]

]
. Since [0, 1

4 ) and
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(X, τ) Hausdorff Regular Normal
− x, y ∈ X, x 6=

y, there exists dis-
joint U ,V ∈ τ such
that x ∈ U and y ∈
V.

x ∈ X, C ⊆ X
closed with x /∈ C,
there exist disjoint
U ,V ∈ τ such that
x ∈ U and C ⊆ V.

C,D ⊆ X closed
and disjoint, there
exists disjoint
U ,V ∈ τ such that
C ⊆ U and D ⊆ V.

Completely x, y ∈ X,
x 6= y, there
exists continuous
f : X → [0, 1]
such that f(x) = 0
and f(y) = 1.

x ∈ X, C ⊆ X
closed with x 6∈ C,
there exists contin-
uous f : X →
[0, 1] with f(x) =
0 and f [C] = { 1 }.

A ⊆ X, then
(A, τA) is normal
where τA is the
subspace topology.

Perfectly N/A N/A C,D ⊆ X closed
and disjoint, there
exists continuous
f : X → [0, 1]
such that
C = f−1[{ 0 }] and
D = f−1[{ 1 }].

Table 1: The Various Separation Properties

( 3
4 , 1] are open in the subspace topology and f is continuous it is true that U

and V are open. But by definition U ∩ V = ∅. But also x ∈ U and C ⊆ V, so
(X, τ) is regular.

Now, isn’t this quite dumb? Completely has one meaning for Hausdorff and
regular, and an entirely different meaning for normal. Don’t blame me, I didn’t
make the rules! This idea of separating things via continuous functions does
have a name for normal spaces, but is slightly different.

Definition 1.6 (Perfectly Normal Topological Space) A perfectly normal
topological space is a topological space (X, τ) such that for all disjoint closed
sets C,D ⊆ X there is a continuous function f : X → [0, 1], where [0, 1] has the
subspace topology, such that f−1[{ 0 }] = C and f−1[{ 1 }] = D. �

Perfectly normal means closed sets can be precisely separated by a continuous
function. Contrast this with completely regular where it is only required that,
given x and a closed set C with x /∈ C, that x ∈ f−1[{ 0 }] and C ⊆ f−1[{ 1 }].
With perfectly normal we require equality. There is no notion of this idea for
regular and Hausdorff spaces (though perfectly Hausdorff and perfectly regular
would be the likely candidate names). See Tab. 1 for an outline of the various
ideas.
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