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1 Connected and Path Connected Components

A topological space (X, τ) does not need to be connected, but it can always be
divided into connected parts. These parts are called the connected components
of the space.

Definition 1.1 (Connected Component) The connected component of a
point x ∈ X in a topological space (X, τ) is the set C ⊆ X defined by:

C =
⋃
{A ⊆ X | x ∈ A and A is connected } (1)

That is, the largest connected subset of X containing x. �

Theorem 1.1. If (X, τ) is a topological space, if x ∈ X, and if C ⊆ X is the
connected component of x, then (C, τC) is a connected topological space where
τC is the subspace topology.

Proof. For if not then there are disjoint non-empty open subsets U ,V such that
C = U ∪ V. But since x ∈ C either x ∈ U or x ∈ V. Suppose x ∈ U . Let O be
defined by:

O = {A ⊆ X | x ∈ A and A is connected } (2)

Then by definition of connected components C =
⋃O. Suppose there is some

A ∈ O such that V ∩ A 6= ∅. But then A ∩ V and A ∩ U are non-empty open
subsets of A with respect to the subspace topology τA. But A∩V and A∩U are
disjoint since U and V are, and hence (A, τA) can be separated by open sets,
which is a contradiction since A ∈ O and hence (A, τA) is connected. We have
thus shown that V ∩A = ∅ for every A ∈ O, and hence V ∩⋃O = ∅. But V ⊆ C
and C =

⋃O, meaning V = ∅, which is a contradiction since V is non-empty.
So (C, τC) is connected.

There is no analogous theorem for intersections. The intersection of two con-
nected sets does not need to be connected. See Fig. 1. Even if we are given
infinitely many connected sets Un that are all nested, Un+1 ⊆ Un, the intersec-
tion

⋂
n∈N Un need not be connected. Take Un to be all points (x, y) such that

y = 0, y = 1, or 0 < y < 1 and x ≥ n. Each Un is connected, and Un+1 ⊆ Un,
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Figure 1: The Intersection of Connected Sets

but
⋂
n Un is two separated lines, the lines y = 0 and y = 1, which is not

connected.

As another example, take Cn to be the closed box [−1, 1] × [−n, n] and let
Un = R2 \ Cn. Then all of the sets Un are open, and are nested and connected,
however

⋂Un splits the plane in half.

Connected components are closed. To show this we’ll need to following theorem
about subspaces.

Theorem 1.2. If (X, τ) is a topological space, if C ⊆ X is closed, and if A ⊆ C
is closed with respect to the subspace topology τC, then A is closed with respect
to τ .

Proof. Since A ⊆ C is closed with respect to τC , C \ A is open. But if C \ A is
open, then by the definition of the subspace topology there is an open set U ∈ τ
such that C \A = C ∩ U . But then:

A = C \ (C ∩ U) = (C \ C) ∪ (C \ U) = ∅ ∪ (C \ U) = C \ U (3)

But C ⊆ X is closed, so C \ U is the difference of an open set from a closed set
which is therefore closed. Therefore A is closed with respect to τ .
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Theorem 1.3. If (X, τ) is a topological space, if A ⊆ X, if τA is the subspace
topology, and if (A, τA) is connected, then (Clτ (A), τClτ (A)) is connected.

Proof. Suppose not. Then there are disjoint closed subsets C,D ⊆ Clτ (A) such
that C ∪ D = Clτ (C). But Clτ (A) is closed with respect to τ , so C and D are
also closed with respect to τ . But then U = X \ C and V = X \ D are disjoint
open sets in τ . But then U ∩A and V ∩A are disjoint non-empty open subsets
with respect to τA that separate A, a contradiction since (A, τA) is connected.
Hence, (Clτ (A), τClτ (A)) is connected.

Theorem 1.4. If (X, τ) is a topological space, and if C ⊆ X is the connected
component of x ∈ X, then it is closed.

Proof. We have that C ⊆ Clτ (C) by the definition of closure. But since
connected components are connected we have that Clτ (C) is connected. But
x ∈ Clτ (C) so, by the definition of connected components, Clτ (C) ⊆ C. Hence
C = Clτ (C) meaning C is closed.

The idea of connected components allows us to define totally disconnected
spaces.

Definition 1.2 (Totally Disconnected Topological Space) A totally dis-
connected topological space is a topological space (X, τ) such that for all x ∈ X
the connected component of x is the set C = {x }. That is, the connected com-
ponents of the space are singleton sets. �

Theorem 1.5. If τQ is the subspace topology of Q with respect to the standard
Euclidean topology τR, then (Q, τQ) is totally disconnected.

Proof. For let x ∈ Q and let C be the connected component of x. Suppose
y ∈ Q is such that y ∈ C with y 6= x. Suppose x < y (the idea is symmetric
either way). Since x, y ∈ Q, and since Q ⊆ R, it is true that x, y ∈ R. Let
z ∈ R \ Q be such that x < z and z < y. This is possible since x and y are
real numbers and the irrational numbers are dense in R. Let U = Q ∩ (−∞, z)
and V = Q ∩ (z, ∞). Then U and V are open in the subspace topology. But
moreover U and V separate x and y, meaning y /∈ C. Hence C is just a singleton
set.

Theorem 1.6. If (X, τ) is a totally disconnected topological space, then it is a
Fréchet topological space.

Proof. For all x ∈ X, since (X, τ) is totally disconnected, the connected com-
ponent of x is C = {x }. But connected components are closed, hence {x }
is closed. But this is true for all x ∈ X, hence (X, τ) is a Frëchet topological
space.

Example 1.1 (The Rational Bug-Eyed Line) Let X = Q × { 0, 1 }, and
give this the product topology τ where Q has the subspace topology from R
and Z2 has the discrete topology. Define the equivalence relation R on X to
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be the equivalence relation induced by (x, 0)R(x, 1) for all x ∈ Q except for
x = 0. The quotient space (X/R, τX/R) is like the bug-eyed line, but has only
rational points (and the two origins). This space is totally disconnected, but
not Hausdorff. �

Path connected components can be similarly defined.

Definition 1.3 (Path Connected Component) The path connected com-
ponent of a point x ∈ X in a topological space (X, τ) is the set C ⊆ X defined
by:

C =
{
y ∈ X | There is a path from x to y

}
(4)

That is, the set of all points that can be connected by a path to x. �

Theorem 1.7. If (X, τ) is a topological space, if x ∈ X, and if C is the path-
connected component of x, then (C, τC) is connected.

Proof. By definition of path connected component, (C, τC) forms a path con-
nected space, and path connected spaces are connected.

2 Locally Connected and Locally Path Connected

Some warning. In topology the word locally has two possible meanings. Given
some property, locally could mean:

1. For every point x in the space there is some open or closed set A containing
the point such that A has the desired property.

2. There exists a basis of open sets B such that every element of B has the
desired property.

For example, a locally metrizable space (X, τ) is a topological space such that
for all x ∈ X there is an open set U ∈ τ such that x ∈ U and (U , τU ) is a
metrizable topological space.

Locally compact means that for all x ∈ X there is an open set U and a compact
subspace (K, τX) such that x ∈ U and U ⊆ K.

With the first use of the word locally, if a space has the property globally, then
it automatically has it locally. That is, metrizable spaces are locally metrizable,
and compact spaces are locally compact. With the second use of the word we are
not so lucky. For connectedness, locally connected and locally path connected
mean we can describe the topology using connected or path connected open
subsets.

The weird connected examples that are not path connected fail to be locally
connected and locally path connected. These two properties have some very
useful results associated with them, so we take the time to study these ideas.
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Definition 2.1 (Locally Connected Topological Space) A locally con-
nected topological space is a topological space (X, τ) such that there is a basis
B for τ such that for all U ∈ B the subspace (U , τU ) is connected. �

Example 2.1 Neither the infinite broom nor the topologist’s sine curve are
locally connected, though both are connected. For the topologist’s sine curve,
any sufficiently small (small makes sense, this is a metric space since its a subset
of R2) open set containing (0, 0) must contain disconnected pieces of the graph
of f(x) = sin(1/x) as well, meaning there can be no basis of connected subsets.
A similar argument holds for the infinite broom. �

In any space connected components are closed. In locally connected spaces they
are also open.

Theorem 2.1. If (X, τ) is a locally connected topological space, if x ∈ X, and
if C is the connected component of x, then C ∈ τ .

Proof. Since (X, τ) is locally connected there is a basis of connected subsets B.
Given y ∈ C, since B is a basis it is an open cover, so there is a Uy ∈ B such
that y ∈ Uy. But then C and Uy are connected subsets that both contain y, so
C ∪Uy is connected. But C is the connected component of x, so since C ∪Uy is
connected and x ∈ C ∪Uy it must be true that C ∪Uy ⊆ C. But C ⊆ C ∪Uy by
definition of unions, so C = C∪Uy and therefore Uy ⊆ C. But C can be written
as the union of all such Uy for all y ∈ C, meaning C is the union of open sets,
which is therefore open.

Theorem 2.2. If (X, τ) is a totally disconnected and locally connected topo-
logical space, then τ = P(X).

Proof. Since (X, τ) is totally disconnected, connected components are singleton
sets. But since (X, τ) is locally connected, connected components are open.
Hence for all x ∈ X the set {x } is open, meaning all subsets of X are open.
That is, τ = P(X).

There is a path connected analogue to locally connected spaces.

Definition 2.2 (Locally Path Connected Topological Space) A locally
path connected topological space is a topological space (X, τ) such that there
is a basis B for τ such that for all U the subspace (U , τU ) is path connected. �

Theorem 2.3. If (X, τ) is locally path connected, if x ∈ X, and if C ⊆ X is
the path connected component of x, then C is open.

Proof. Since (X, τ) is locally path connected there is a basis B of open path
connected subspaces. But since B is a basis it is an open cover, so given y ∈ C
there is a Uy ∈ B such that y ∈ Uy. But C and Uy are path connected and
y ∈ Uy ∩ C, so Uy ∪ C is path connected. Since C is the path connected
component of x, Uy ∪C ⊆ C, and hence Uy ⊆ C. But then C can be written as
the union of all such Uy for all y ∈ C, meaning C is the union of open sets, and
is therefore open.
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Theorem 2.4. If (X, τ) is locally path connected, if x ∈ X, and if C ⊆ X is
the path connected component of x, then C is closed.

Proof. Suppose not. Then C 6= Clτ (C). Let y ∈ Clτ (C) \ C. Since (X, τ) is
locally path connected there is a basis B of open path connected subspaces. But
if B is a basis, since y ∈ X there is a U ∈ B such that y ∈ U . But if y ∈ Clτ (X)
and y ∈ U , then U ∩C is non-empty (from the definition of closure). But U and
C are path connected subspaces with non-empty intersection, so U ∪ C is path
connected. But C is the path connected component of x, so U ∪ C ⊆ C, and
hence U ⊆ C. But then y ∈ C, a contradiction. Hence, C is closed.

Theorem 2.5. If (X, τ) is connected and locally path connected, then it is path
connected.

Proof. Suppose not. Then there are x, y ∈ X such that there is no continuous
function f : [0, 1] → X such that f(0) = x and f(1) = y. Let C be the path
connected component of x. Then y /∈ C, and hence C is a proper subset of X.
But x ∈ C, so C is non-empty. But since C is the path connected component
of x, and since (X, τ) is locally path connected, C is both open and closed.
But then C is a non-empty proper subset of X that is both open and closed,
and therefore (X, τ) is disconnected, which is a contradiction since (X, τ) is
connected. Hence, (X, τ) is path connected.

3 Arc Connected

Arc connected is a slightly stronger notion that many might think is the same
thing as path connected. In Hausdorff spaces, the notions are the same. First,
a definition.

Definition 3.1 (Arc Connected Topological Space) An arc connected
topological space is a topological space (X, τ) such that for all x, y ∈ X there
is an injective continuous function f : [0, 1] → X such that f(0) = x and
f(1) = y. �

The only difference between path connected and arc connected is the introduc-
tion of the word injective. The following theorem takes a lot of effort, and we
don’t have time for it, but I still want to present it. The proof is omitted.

Theorem 3.1. If (X, τ) is a Hausdorff path connected topological space, then
it is arc connected.

Example 3.1 Without the Hausdorff condition you can have path connected
spaces that are not arc connected. The bug-eyed line is an example. There is a
path from the first zero 00 to the second zero 01, namely:

f(x) =


00 t = 0

t− t2 0 < t < 1

01 t = 1

(5)
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That is, you start at the first zero, walk out a bit to some positive real number,
and then walk back to the second zero. This is not injective, you crossed over
a bunch of real numbers twice. It’s impossible to do this injectively. This space
is not Hausdorff, so there is no violation of the previous theorem. �
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