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1 Compactness

For a course in point-set topology, if you understand the general notions (topo-
logical spaces, continuity, Hausdorffness, sequentialness), the basis properties
(first and second countable), creating new spaces (products, subspaces, quo-
tients), the separation ideas (regular and normal), connectedness, and com-
pactness, then you have an absolutely solid understanding of general topology.
We’ve covered all of these ideas except compactness, which we’ve only discussed
in the context of metric spaces (or metrizable spaces). We now take the time to
study compactness in the general topological setting.

In a metric space we proved several theorems about compactness, primarily
the Bolzano-Weierstrass, Heine-Borel, generalized Heine-Borel, and equivalence
of compactness theorems. This told us that compactness can be described by
sequences and by open sets. In the topological setting it is more natural to
define compactness via open sets.

Definition 1.1 (Compact Topological Space) A compact topological space
is a topological space (X, τ) such that for all open covers O ⊆ τ there is a finite
subset ∆ ⊆ O such that ∆ is open cover. �

We have spent a lot of time on compactness in the setting of metric spaces.
Let’s not waste that time, and copy over some of the theorems but rephrase
them for metrizable spaces.

Theorem 1.1. If (X, τ) is a metrizable topological space, then it is compact if
and only if for all metrics d on X that induce τ , (X, d) is a compact metric
space.

Proof. By the equivalence of compactness theorem, any metric d that induces
τ has the property that any open cover of open sets in the metric space (X, d)
has a finite open subcover, which is precisely the definition of compactness in
the topological setting.

Theorem 1.2. If (X, τ) is a metrizable topological space, then it is compact
if and only if for every metric d on X that induces τ , (X, d) is complete and
totally bounded.
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Proof. This follows from the previous theorem and the generalized Heine-Borel
theorem.

Theorem 1.3. If (R, τR) is the standard Euclidean line, and if A ⊆ R, then
(A, τRA

) is compact if and only if A is closed and bounded.

Proof. The Euclidean topology on R, τR, is induced by the Euclidean metric
d(x, y) = |x− y|. The result then follows from the Heine-Borel theorem.

Theorem 1.4. If (Rn, τRn) is Euclidean space, and if A ⊆ Rn, then (A, τRn
A

)
is compact if and only if A is closed and bounded.

Proof. This too follows from the Heine-Borel theorem.

This now gives us plenty of familiar spaces that are compact. Lacking a metriz-
able space, there are still plenty of pleasing properties compact topologies yield.

Theorem 1.5. If (X, τ) is a compact topological space, and if C ⊆ X is closed,
then (C, τC) is compact where τC is the subspace topology.

Proof. For if not then there is an open cover OC of (C, τC) with no finite sub-
cover. But by the definition of the subspace topology, for all U ∈ OC there is
an open set Ũ ∈ τ such that U = C ∩ Ũ . Let OX ⊆ τ be defined by:

OX = { Ũ ∈ τ | U ∈ OC } (1)

OX covers C with elements of τ , but it need not cover all of X. However, since
C is closed, X \ C is open. Let O ⊆ τ be defined by:

O = OX ∪ {X \ C } (2)

Then O ⊆ τ is an open cover of X, and since (X, τ) is compact there is a finite
subcover ∆. Define ∆X = ∆ \ {X \ C }. Then, by definition of O and OX ,
∆X ⊆ OX . But also ∆X is finite. But since ∆ covers X and X \ C is disjoint
from C, ∆X must cover C as well. Define ∆C via:

∆C = {U ∩ C | U ∈ ∆X } (3)

By definition of OX and ∆X we have that ∆C ⊆ OC . But since ∆X covers C, so
does ∆C . But then ∆C ⊆ OC is a finite subset that still covers C, a contradiction.
Hence, (C, τC) is compact.

This theorem does not need to reverse, in general. That is, compact subsets
don’t need to be closed (but in metric spaces they are). Give R the indiscrete
topology τ = { ∅, R }. Then every subset A ⊆ R is compact since the only open
covers possible are finite (they have at most two subsets). However only ∅ and
R are closed. If we add the Hausdorff condition, then compact subspaces are
closed.

Before proving this, it was quite annoying dealing with the subspace topology
in the previous theorem. It feels unnecessary. With compact subspaces, if we
can cover the subspace with sets that are open in the ambient space, then there
is a finite subcover of this as well. Let’s prove this.
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Theorem 1.6. If (X, τ) is a topological space, if A ⊆ X, and if (A, τA) is
compact, where τA is the subspace topology, then for all O ⊆ τ such that A ⊆⋃
O, there is a finite subset ∆ ⊆ O such that A ⊆

⋃
∆.

Proof. If not, then there is a subset O ⊆ τ such that A ⊆
⋃
O but with no

finite subset that still covers A. Let Õ be defined by:

Õ = {U ∩A | A ∈ O } (4)

By definition of the subspace topology, Õ ⊆ τA. But since A ⊆
⋃
O, we have

A =
⋃
Õ. But (A, τA) is compact, so there is a finite subcover ∆̃ ⊆ Õ. Since it

is finite we may label it:

∆̃ = {U0 ∩A, . . . , Un ∩A } (5)

Define ∆ ⊆ O via:
∆ = {U0, . . . , Un } (6)

Then we have:

A =

n⋃
k=0

(
Uk ∩A

)
=
( n⋃

k=0

Un
)
∩A ⊆

n⋃
k=0

Un (7)

So ∆ ⊆ O is a finite subset of O that covers A, which is a contradiction. Hence,
for any O ⊆ τ such that A ⊆

⋃
O, there is a finite subset ∆ ⊆ O such that

A ⊆
⋃

∆.

Now when dealing with compact subspaces we can restrict our attention to open
sets in the ambient space, which is often easier.

Theorem 1.7. If (X, τ) is a Hausdorff topological space, if A ⊆ X, and if
(A, τA) is compact, where τA is the subspace topology, then A is closed.

Proof. If A = ∅, then there is nothing to prove since ∅ is closed. Suppose A 6= ∅.
If A is not closed, then X \A is not open, and hence there is an x ∈ X \A such
that for all U ∈ τ with x ∈ U it is not true that U ⊆ X \A (otherwise we could
write X \A as the union of all such U for all x ∈ X \A, showing that X \A is
the union of open sets, which is therefore open). But then for all y ∈ A, since
(X, τ) is Hausdorff, there exist open sets Uy,Vy such that x ∈ Uy, y ∈ Vy, and
Uy ∩ Vy = ∅. But the collection of all such Vy cover A, and since (A, τA) is
compact, there is a finite subcover. Label the elements of the finite subcover as
V0, . . . , Vn. Label the corresponding open sets around x as U0, . . . , Un. Define
Ũ via:

Ũ =

n⋂
k=0

Uk (8)

Then Ũ is open, being the intersection of finitely many open sets, and x ∈ Ũ
since x ∈ Uk for all k. But Ũ is disjoint from A. For if y ∈ A and y ∈ Ũ , since
V0, . . . , Vn cover A there is some 0 ≤ k ≤ n such that y ∈ Vk. But then:

Ũ ∩ Vk ⊆ Uk ∩ Vk = ∅ (9)
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a contradiction, so Ũ and A are disjoint. But then Ũ is an open set such that
x ∈ Ũ and Ũ ⊆ X \A, which is a contradiction. Hence, A is closed.

Theorem 1.8. If (X, τX) is a compact topological space, if (Y, τY ) is a topo-
logical space, and if f : X → Y is continuous, then (f [X], τYf[X]

) is compact
where τYf[X]

is the subspace topology.

Proof. Suppose not and let O be an open cover of f [X] with no finite subcover.
Then for all V ∈ O, by the definition of the subspace topology, there is an open
Ṽ ∈ τY such that V = Ṽ ∩ f [X]. Define Õ via:

Õ = { Ṽ | V ∈ O } (10)

Then Õ is a collection of open sets in Y that cover f [X]. Since f is continuous,
for all Ṽ ∈ Õ the set f−1[Ṽ] is open in X. But Õ covers f [X], and hence the
set:

O = { f−1[Ṽ] | Ṽ ∈ Õ } (11)

is an open cover of (X, τX). But (X, τX) is compact, so there is a finite subcover
D ⊆ O. Form the set ∆̃ ⊆ Õ by choosing a single element Ṽ ∈ Õ for each U ∈ D
such that U = f−1[Ṽ]. Then ∆̃ ⊆ Õ is a finite subset that covers f [X]. But
then the set ∆ of sets of the form Ṽ ∩ f [X] for all Ṽ ∈ ∆̃ is a finite subset of O
that covers f [X], a contradiction. Hence, (f [X], τYf[X]

) is compact.

Theorem 1.9. if (X, τX) is a compact topological space, if (Y, τY ) is a Haus-
dorff topological space, and if f : X → Y is continuous and bijective, then f is
a homeomorphism.

Proof. It suffices to show that f is a closed mapping since f is a homeomorphism
if and only if it is bijective, continuous, and a closed mapping. Since f is bijective
and continuous by hypothesis, we need only show it is also a closed mapping.
Let C ⊆ X be closed. But (X, τX) is compact and C is closed, so (C, τXC ) is
compact. But then, since f is continuous, f [C] ⊆ Y is a compact subspace. But
(Y, τY ) is Hausdorff, so f [C] is closed. Hence, f is a closed mapping, so it is a
homeomorphism.

Theorem 1.10. If (X, τ) is a compact Hausdorff space, then it is regular.

Proof. Let x ∈ X, C ⊆ X be closed, and x /∈ C. We must find open subsets
U ,V ∈ τ such that x ∈ U , C ⊆ V, and U ∩ V = ∅. Since x /∈ C, for all y ∈ C we
have x 6= y. But (X, τ) is Hausdorff so for all y ∈ C there are open sets Uy, Vy
such that x ∈ Uy, y ∈ Vy, and Uy ∩ Vy = ∅. But then the set:

O = { Vy | y ∈ C } (12)

is a collection of open sets that cover C. But (X, τ) is compact, and C is a closed
subset, meaning there is a finite subset ∆ ⊆ O that covers C. Label the sets as:

∆ = { V0, . . . , VN } (13)
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Label the corresponding open sets around x similarly:

Λ = {U0, . . . , UN } (14)

Define:

W =
⋂

Λ =

N⋂
k=0

Uk (15)

Then W is open, being the intersection of finitely many open sets, and x ∈ W
since x ∈ Uk for each k. Furthermore, define:

E =
⋃

∆ =

N⋃
k=0

Vk (16)

Since ∆ covers C, we have C ⊆ E . Morever, E is open, being the union of open
sets. So x ∈ W and C ⊆ E , and both W and E are open. We conclude by
showing that W ∩ E = ∅. By definition of W we have that W ⊆ Uk for each k.
But Uk ∩ Vk = ∅. So W ∩ Vk = ∅ for all k, and hence W ∩ E = ∅. So (X, τ) is
regular.

Theorem 1.11. If (X, τ) is a compact Hausdorff space, then it is normal.

Proof. Let C and D be closed disjoint subsets of X. If one of them is empty, we
may choose U = ∅ and V = X. So suppose neither are empty. By the previous
theorem, a compact Hausdorff space is regular. Hence for all x ∈ C, since x /∈ D,
we have that there are open disjoint sets Ux,Vx ∈ τ such that x ∈ Ux, C ⊆ Vx,
and Ux ∩ Vx = ∅. The collection:

O = {Ux | x ∈ C } (17)

is a collection of open sets that cover C. Since (X, τ) is compact and C ⊆ X is
closed there is a finite subcover ∆ ⊆ O of C. Label the elements as:

∆ = {U0, . . . , UN } (18)

label the corresponding open sets around D as well:

Λ = { V0, . . . , VN } (19)

Define:

W =
⋂

Λ =

N⋂
k=0

Vk (20)

Then W is open, being the intersection of finitely many open sets, and D ⊆ W
since D ⊆ Vk for each k. Furthermore, define:

E =
⋃

∆ =

N⋃
k=0

Uk (21)

Then E is open, being the union of open sets, and C ⊆ E since ∆ is an open
cover of C. Finally, W∩E = ∅ since Uk ∩Vk = ∅ for all k, and henceW∩Vk = ∅
as well, meaning W ∩ E = ∅. Therefore (X, τ) is normal.
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Definition 1.2 (Sequentially Compact Topological Space) A sequentially
compact topological space is a topological space (X, τ) such that for every
sequence a : N→ X there is a convergent subsequence ak. �

Theorem 1.12. If (X, τ) is metrizable, then it is compact if and only if it is
sequentially compact.

Proof. This follows from the equivalence of compactness theorem.

Metrizable, sequentially compact, and compact are three properties such that
none implies the other. This is a good counterexample to the bad practice
many students often make in logic. If P , Q, and R are statements, and if
P ∧Q ⇔ P ∧Q, is it true that Q ⇔ R? That is, can you divide by P? These
three topological properties provide a counterexample. Metrizable and compact
if and only if metrizable and sequentially compact. Let’s show none of these
statements, by themselves, are logically equivalent or imply any of the others.

� Compact and not metrizable: The indiscrete topology on R. The only
open covers possible are finite to begin with, so the space is compact. It
is not metrizable since it is not Hausdorff.

� Sequentially compact and not metrizable: The Sierpinski space (Z2, τ)
where τ =

{
∅, { 0 }, Z2

}
. Any sequence a : N → Z2 must have a con-

vergent subsequence since either infinitely many indices n ∈ N are such
that an = 0 or infinitely many are such that an = 1 (since N is infinite).
Hence there must be a constant subsequence, which is a convergent one.
The space is not metrizable since it is not Hausdorff.

� Metrizable and not compact: The discrete topology on R. The cover
consisting of all single points {x } for x ∈ R has no finite subcover. It
doesn’t even have a countable subcover.

� Metrizable and not sequentially compact: The standard topology on R.
The sequence a : N→ R defined by an = n has no convergent subsequence.

� Compact and not sequentially compact: The product space
∏

r∈[0, 1][0, 1].
This is compact, with the product topology, by the Tychonoff theorem,
something we’ll get to soon. It is not sequentially compact. The product
is uncountable so the space is not first countable, and intuitively sequences
are not enough to describe the space.

� Sequentially compact and not compact: The long line. It is not compact,
take as your open cover open intervals about the center that get larger
and larger and exhaust the space. The open sets in this cover are nested,
and no finite collection of such intervals cover the space. It is sequentially
compact, which is hard to imagine. For simplicity, let’s just use the long
ray, which is the product of the first uncountable ordinal ω1 with [0, 1)
equipped with the lexicographic order topology. Given a sequence a in the
long ray, an = (αn, xn) where αn is an element of the first uncountable
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ordinal and xn ∈ [0, 1). But the first uncountable ordinal is uncountable
and N is countable, so this sequence cannot exhaust all of ω1. Because
of this the elements will be contained in a small subset of the long ray, a
subset that looks like the closed unit interval [0, 1], topologically speaking.
By using an argument similar to the proof of Bolzano’s theorem (which is
used to prove the Heine-Borel theorem for R), we can conclude that any
such sequence must have a convergent subsequence. So the long ray is
sequentially compact.
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