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1 Paracompact Spaces

Paracompactness is an idea that seems, at first glance, strange, and is nowhere
near as strong as compactness. One may then wonder why on Earth it deserves
study, let alone a name. One of the motivations is the Urysohn metrization
theorem. This theorem goes one way, a second countable regular Hausdorff space
is metrizable. It does not reverse. The discrete topology R is metrizable but
not second countable. It would be nice to have a theorem that gives necessary
and sufficient conditions for a space to metrizable. The Nagata-Smirnov and
Smirnov metrization theorems do this. At the heart of both theorems is the
idea of local finiteness. The Nagata-Smirnov theorem requires σ locally finite
bases, the Smirnov theorem uses paracompactness. We take the time to develop
these and similar ideas. This leads in to the Stone paracompactness theorem
and these two metrization theorems.

Definition 1.1 (Locally Finite Collection) A locally finite collection in a
topological space (X, τ) is a subset A ⊆ P(X) such that for all x ∈ X there is a
U ∈ τ such that x ∈ U and only finitely many A ∈ A are such that A∩U 6= ∅. �

Note there is no requirement that A consist of open sets or closed sets. There
is no requirement that A covers the space either. All that is required is local
finiteness.

Definition 1.2 (Refinement of a Collection) A refinement of a collection
A ⊆ P(X) in a topological space (X, τ) is a set Ã ⊆ P(X) such that for all
Ã ∈ Ã there is an A ∈ A such that Ã ⊆ A. �

The idea behind a refinement is that we take sets in A and shrink them, in some
sense. Again, in general, there is no requirement that A or Ã consist of open or
closed sets. Open refinements are refinements consisting of open sets, and closed
refinements consist of closed sets. This idea is used to define paracompactness.

Definition 1.3 (Paracompact Topological Space) A paracompact topolog-
ical space is a topological space (X, τ) such that for all open covers O ⊆ τ of X
there exists a locally finite open refinement X ⊆ τ of O that is an open cover
of (X, τ). �
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This is a very weak notion, many familiar spaces are paracompact, and yet it has
enormous use in manifold theory and the study of metric spaces. In particular
because every manifold and every metrizable space is paracompact.

Theorem 1.1. If (X, τ) is a compact topological space, then it is paracompact.

Proof. In a compact space every open cover has a finite subcover, which is
certainly a locally finite open refinement of the cover.

Far weaker than compactness, σ compact plus locally compact Hausdorff implies
paracompact. We’ve discussed local compactness in metric spaces, and the
definition has very little difference in topological spaces.

Definition 1.4 (Locally Compact Topological Space) A locally compact
topological space is a topological space (X, τ) such that for all x ∈ X there is
an open set U ∈ τ and a compact set K ⊆ X such that x ∈ U and U ⊆ K. �

Before proving locally compact σ compact spaces are paracompact, we’ll need
a little lemma.

Theorem 1.2. If (X, τ) is locally compact and Hausdorff and if x ∈ X, then
there is a U ∈ τ such that x ∈ U and Clτ (U) is compact.

Proof. Since (X, τ) is locally compact there is a U ∈ τ and a compact K ⊆ X
such that x ∈ U and U ⊆ K. But (X, τ) is Hausdorff, so K is closed. But then
Clτ (U) ⊆ K. But then Clτ (U) is a closed subset of a compact space, which is
therefore compact.

Theorem 1.3. If (X, τ) is σ compact, locally compact, and Hausdorff, then it
is compactly exhaustible.

Proof. Since (X, τ) is σ compact there are countably many sets Cn, n ∈ N, each
of which is compact and such that they cover the space. For all n ∈ N and for
all x ∈ Cn, since (X, τ) is locally compact and Hausdorff, there is a Vx,n ∈ τ
such that x ∈ Vx,n and Clτ (Vx,n) is compact. But these sets cover Cn, which
is compact, so we can do it with finitely many, V0,n, . . . , VN,n. Since this is a
finite collection we have:

Clτ

( N⋃
k=0

Vk,n
)

=

N⋃
k=0

Clτ (Vk,n) (1)

Define Un via:

Un =

N⋃
k=0

Vk,n (2)

Then Un is open and by the previous equation Cln(Un) is the finite union of
compact sets, which is therefore compact. Recursively defineWn as follows. Set
W0 = U0. LetWn ∈ τ be such that

⋃n
k=0 Uk ⊆ Wn,Wn−1 ⊆ Wn, and such that

Clτ (Wn) is compact. Define Wn+1 as follows. Since Clτ (Wn) and Clτ (Un+1)
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are compact, so is the union. Thus, by the previous argument, we can cover
it in finitely many open sets V0, . . . , VN , each of which has compact closure.
Define:

Wn+1 =

N⋃
k=0

Vk (3)

Then Wn+1 is open and:

Clτ (Wn+1) = Clτ

( N⋃
k=0

Vk
)

=

N⋃
k=0

Clτ (Vk) (4)

which is the finite union of compact sets, so it is compact. But moreover,
from the construction, since the Vk cover Clτ (Wn), we have Clτ (Wn) ⊆ Wn+1.
Define:

Kn = Clτ (Wn) (5)

Then Kn is compact and Kn ⊆ Intτ (Kn+1) sinceWn+1 ⊆ Intτ (Kn+1). Morever⋃
n∈NKn = X since Cn ⊆ Un, Un ⊆ Wn, and Wn ⊆ Kn. Since the Cn cover X,

so do the Kn. Hence, (X, τ) is compactly exhaustible.

Theorem 1.4. If (X, τ) is compactly exhaustible and Hausdorff, then it is
paracompact.

Proof. Let K : N → P(X) be such that for all n ∈ N Kn is compact, Kn ⊆
Intτ (Kn+1), and

⋃
n∈NKn = X. Note that, since Intτ (Kn) ⊆ Kn+1 is open,

and Kn+1 is compact, Kn+1 \ Intτ (Kn) is compact. Let O be an open cover.
We must find a locally finite open refinement X of O. But O covers X, so it
covers Kn+1 \ Intτ (Kn). By compactness there are finitely many V0, . . . , VnN

that cover Kn+1 \ Intτ (Kn). Define ∆n via:

∆n =
{
Vk ∩

(
Intτ (Kn+2) \Kn−1

)
| 0 ≤ k ≤ Nn

}
(6)

(define K−1 = ∅ for the case n = 0). But (X, τ) is Hausdorff, so each Kn

is closed, hence Intτ (Kn+2) \ Kn−1 is open, meaning all elements of ∆ are
open. The set X =

⋃
n∈N ∆n is a locally finite open refinement. It is an open

refinement, the elements are open and are contained as subsets of the elements
of O by construction. It is also an open cover since it covers each Kn, and the
Kn cover X. Lastly, it is locally finite. Every element of X is contained in
some Intτ (Kn+1) \ Kn−1 for some n, and X has only finitely many elements
with non-empty intersection with this set, the elements of ∆n. So X is a locally
finite open refinement of O that covers X, so (X, τ) is paracompact.

Theorem 1.5. If (X, τ) is paracompact, and if C ⊆ X is closed, then (C, τC)
is paracompact where τC is the subspace topology.

Proof. The proof is a mimicry of the idea for compact spaces. Given an open
cover O of C, we extend it to an open cover Õ of X via Õ = O∪{X \C }. Using
the paracompactness of (X, τ) we get a locally finite open refinement X̃ that
covers X. We restrict these sets to C to obtain a locally finite open refinement
X of O that covers C.
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Theorem 1.6. If (X, τ) is a topological space, and if A ⊆ P(X) is locally
finite, then the set:

A′ = {Clτ (A) | A ∈ A} (7)

is locally finite as well

Proof. Let x ∈ X. Since A is locally finite, there is a U ∈ τ such that x ∈ U and
U∩A = ∅ for all but finitely many elements of A. Suppose A ∈ A and U∩A = ∅.
Let us show that U ∩ Clτ (A) = ∅. Since U is open, and since U ∩ A = ∅, we
have that X \ U is closed and A ⊆ X \ U . But since X \ U is closed we have
Clτ (A) ⊆ X \ U . But then U ∩ Clτ (A) = ∅. This means for all A ∈ A, A ∩ U
is non-empty if and only if Clτ (A) ∩ U is non-empty. Since only finitely many
elements of A have non-empty intersection with U , the exact same number of
sets in A′ will have non-empty intersection with U . Hence the collection A′ is
locally finite.

Theorem 1.7. If (X, τ) is a topological space, and if A ⊆ P(X) is locally
finite, then:

Clτ

( ⋃
A∈A

A
)

=
⋃
A∈A

Clτ (A) (8)

Proof. Even without the locally finite assumption, we may prove that:⋃
A∈A

Clτ (A) ⊆ Clτ

( ⋃
A∈A

A
)

(9)

Since A ∈ A we have that A ⊆
⋃
A. But then Clτ (A) ⊆ Clτ (

⋃
A). Since this

is true of all A ∈ A, the union on the left-hand side of the equation must be a
subset of the right-hand side. To prove the reverse inclusion requires the locally
finite condition. Let x ∈ Clτ (

⋃
A). Since A is locally finite, there is an open

set U ∈ τ such that x ∈ U and U ∩ A = ∅ for all but finitely many A ∈ A.
But U is open, x ∈ U , and x ∈ Clτ (

⋃
A) meaning U ∩

⋃
A is non-empty. But

since only finitely many elements of A can intersect U , and since the number
of such elements is not zero by the previous statement, we may label the sets
A0, . . . , An for some n ∈ N. But then:

Clτ

( ⋂
A∈A

(
A ∩ U

))
= Clτ

( n⋂
k=0

(
Ak ∩ U

))
=

n⋃
k=0

Clτ
(
Ak ∩ Un

)
(10)

But also:
n⋃
k=0

Clτ
(
Ak ∩ Un

)
⊆

n⋃
k=0

Clτ
(
Ak
)
⊆
⋃
A∈A

Clτ (A) (11)

From this we may conclude that x ∈
⋃
A∈A Clτ (A), and hence we have equality.

Theorem 1.8. If (X, τ) is paracompact and Hausdorff, then it is regular.
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Proof. For let x ∈ X, C ⊆ X be closed, and x /∈ C. Since (X, τ) is Hausdorff,
for all y ∈ C there are Uy,Vy ∈ τ such that x ∈ Uy, y ∈ Vy, and Uy ∩ Vy = ∅.
But then:

O = { Vy | y ∈ C } (12)

is an open cover of C. But (X, τ) is paracompact and C is closed, so there is a
locally finite open refinement X that covers C. But by the definition of O, since
X is a refinement of O, for all W ∈ X there is a Vy ∈ O such that W ⊆ Vy.
Hence all elements of X are subsets of Vy for some y ∈ C. But then, since x ∈ Uy
and Uy ∩ Vy = ∅, we have x /∈ Clτ (Vy). But X is locally finite, hence:

Clτ

( ⋃
A∈X

A
)

=
⋃
A∈X

Clτ (A) (13)

And hence x /∈ Clτ
(⋃

A∈X A
)
. Let U = X \ Clτ

(⋃
X
)

and V =
⋃
X . Then U

and V are open and disjoint, x ∈ U , and C ⊆ V. Hence, (X, τ) is regular.

Theorem 1.9 (Dieudonne’s Theorem). If (X, τ) is paracompact and Haus-
dorff, then it is normal.

Proof. We apply the same idea as before. Since (X, τ) is paracompact and
Hausdorff, it is regular. Given two closed disjoint sets C,D ⊆ X for all x ∈ C
we find Ux,Vx ∈ τ such that x ∈ Ux, D ⊆ Vx, and Ux ∩ Vx = ∅. We use
paracompactness and apply a similar argument to the previous theorem to prove
normality.

We now take the steps towards proving the two main metrization theorems. The
Nagata-Smirnov theorem, and the Smirnov theorem. The Smirnov theorem
uses paracompactness to characterize metrizable spaces, the Nagata-Smirnov
theorem uses a very similar idea as the Urysohn metrization theorem. Urysohn’s
theorem said a regular Hausdorff space that is second countable is metrizable.
All metrizable spaces are regular and Hausdorff, so this can not be omitted,
however the second countability can be weakened. The idea that is required for
metrizability is σ locally finite bases. Related to this concept is the notion of a
σ locally finite open cover.

Definition 1.5 (σ Locally Finite Open Cover) A σ locally finite open cover
of a topological space (X, τ) is an open cover O ⊆ τ such that there exists
countably many locally finite collections ∆n ⊆ τ such that O =

⋃
n∈N ∆n. �

Now for some results related to this notion, paracompactness, and metrization.
First, a little lemma.

Theorem 1.10. If (X, τ) is a metrizable topological space, if d is a metric that
induces the topology, if A ⊆ X, and if r ∈ R+, then the set:

Sr(A) = {x ∈ X | B(X, d)
r (x) ⊆ A } (14)

is closed.
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Proof. For if not then there is a sequence a : N → Sr(A) that converges to a
point x ∈ X but x /∈ Sr(A). But if x /∈ Sr(A), then there is a point y ∈ X such
that d(x, y) < r and y /∈ A. Let ε = r− d(x, y). Since ε > 0 and an → x, there
is an N ∈ N such that n ∈ N and n > N implies d(x, an) < ε. Let n = N + 1.
Then n > N and hence d(x, an) < ε. But then:

d(an, y) ≤ d(an, x) + d(x, y) (15)

< ε+ d(x, y) (16)

= (r − d(x, y)) + d(x, y) (17)

= r (18)

And hence d(an, y) < r. But then y ∈ B
(X, d)
r (an). But an ∈ Sr(A), so

B
(X, d)
r (an) ⊆ A. But then y ∈ A, a contradiction. Hence, Sr(A) is closed.

Theorem 1.11. If (X, τ) is metrizable, and if O ⊆ τ is an open cover, then
there is a σ locally finite open cover X that is a refinement of O.

Proof. This theorem is part of the proof that metrizable spaces are paracompact
(which is Stone’s paracompactness theorem). The original proof is very long but
can be shortened by using the well ordering theorem. This makes the theorem
less-than-intuitive, but pages and pages shorter. The curious reader should
consult A. H. Stone’s original papers for the more straight-forward but longer
and more involved proof.

Since O is a set, there is a well-order on it ≺. Since (X, τ) is metrizable there is
a metric d that induces the topology τ . For all n ∈ N and for all U ∈ O define:

Sn(U) = {x ∈ X | B(X, d)
1

n+1

(x) ⊆ U } (19)

That is, the set of all points in U that can be surrounded with a ball of radius
1/(n+1) that is completely contained in U . Each Sn(U) is closed by the previous
theorem. Define Tn(U) via:

Tn(U) = Sn(U) \
⋃{

V ∈ O | V ≺ U
}

(20)

We have used the well-order. We take the union of all sets that are less than U
with respect to the well-order ≺ in the last part of this equation. For all x ∈
Tn(U) and y ∈ Tn(V), with U ,V ∈ O distinct, we have from this construction
that d(x, y) ≥ 1

n+1 . The set Tn(U) is the difference of an open set from a closed
set, which is therefore closed. We want open sets. Define En(U) via:

En(U) =
⋃

x∈Tn(U)

B
(X, τ)

1
3n+3

(x) (21)

Then En(U) is open, being the union of open balls. By choosing the radii to
be 1

3n+3 , we ensure that En(U) and En(V) are disjoint whenever U ,V ∈ τ are
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distinct. We use this to obtain our σ locally finite cover that is a refinement of
O. First, define:

An = {En(U) | U ∈ O } (22)

And define X =
⋃
n∈NAn. From the construction, given U ∈ O, we have

En(U) ⊆ U , and hence X is a refinement of O. Each An is locally finite, the
ball of radius 1

6n+6 centered at x intersects only one element of An. Lastly, X
covers X. Given x ∈ X, since O covers X, there is a U ∈ O such that x ∈ U .
But d induces τ , so there is an r > 0 such that the r ball centered at x is
contained in U . Choose N ∈ N so that 1

N+1 < r. Then x ∈ EN (U), showing
that there is an element of X that contains x. So X is a σ locally finite open
cover that is a refinement of X .

This idea comes from Mary Ellen Rudin, one of the great topologists of the
second half of the 20th century. Stone’s paracompactness theorem now comes
in two more steps. These theorems are a bit of work, but we get two pretty
results out of them. First, Stone’s paracompactness theorem, but also the fact
that every regular Lindelöf space is paracompact, essentially for free.

Theorem 1.12. If (X, τ) is a topological space, if O ⊆ τ is an open cover, and
if X is a σ locally finite open cover that is a refinement of O, then there is a
locally finite cover (but not necessarily an open one) ∆ that is a refinement of
O.

Proof. Since X is σ locally finite and an open cover there are countably many
An, each of which is locally finite, such that X =

⋃
n∈NAn. Let Un ∈ τ be

defined by:

Un =
⋃
An (23)

Since the elements of An are open subsets, Un is open. For all V ∈ An, define:

Sn(V) = V \
n−1⋃
k=0

Uk (24)

Sn(V) is the set difference of an open set from an open set, so it may be open,
closed, both, or neither. We simply don’t know. Define ∆n to be:

∆n = {Sn(V) | V ∈ An } (25)

Let ∆ =
⋃
n∈N ∆n. We must now show ∆ is locally finite and covers X. First,

∆ is a cover of X. Given x ∈ X, since the sets Un cover X, there is some
n ∈ N such that x ∈ Un. By the well-ordering property of the natural numbers
there is a least such number N ∈ N such that x ∈ UN . Then for all n < N we
have x /∈ Un, and hence by definition x ∈ SN (V) where V ∈ AN is such that
x ∈ V. So ∆ covers X. Next, it is locally finite. Given x ∈ X, since each An is
locally finite we have that there is a Vn ∈ τ such that x ∈ Vn and Vn intersects
only finitely many elements of An. Again, let N ∈ N be the least integer such
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that x ∈ UN . Then for all n > N we have UN has empty intersection with the
elements of ∆n, by definition of Sn. So the set:

Ũ = UN ∩
N⋂
k=0

Vk (26)

is an open set that contains x and is such that only finitely many elements of
∆ have non-empty intersection with Ũ . Hence ∆ is locally finite.

This would be much stronger if the set ∆ consists of open sets. In this con-
struction it almost certainly does not. The difference of an open set from an
open set is rarely open in usual spaces. For example, in R, given a < c < b < d,
(a, b) \ (c, d) = (a, c], which is neither closed nor open. We need to modify this
idea.

Theorem 1.13. If (X, τ) is a regular topological space such that for all open
covers O of X there is a locally finite refinement ∆ of O that covers X, then
every open cover O has a locally finite open refinement X that covers X.

Proof. Let O be an open cover and let ∆ be a locally finite refinement (it does
not need to be an open one). Since ∆ is locally finite, for all x ∈ X there
is a Ux ∈ τ such that Ux has non-empty intersection with only finitely many
elements of ∆. The set:

A = {Ux | x ∈ X } (27)

is thus an open cover of X. Let ∆′ be a locally finite refinement of A, which
exists by hypothesis. Define

∆′′ = {Clτ (A) | A ∈ ∆′ } (28)

Since ∆′ is locally finite, so is ∆′′ and ∆′′ consists of closed sets. For all A ∈ ∆,
define BA via:

BA = {B ∈ ∆′′ | B ⊆ X \A } (29)

and define VA via:

VA = X \
⋃
BA (30)

Since ∆′′ is locally finite, and since the elements of it are closed, we have
⋃
BA

is closed, and hence VA is open. Since each element of BA is disjoint from A,
we have that A ⊆ VA. Since ∆ is a refinement of O, for all A ∈ ∆ there is a
WA ∈ O such that A ⊆ WA. Define:

X = { VA ∩WA | A ∈ ∆ } (31)

Then X is a refinement of O and also an open cover of X, by definition of VA
and WA. We must show it is locally finite. For given x ∈ X, since ∆′′ is locally
finite, there is a W ∈ τ such that x ∈ W and only finitely many elements of
∆′′ have non-empty intersection with W. But ∆′′ covers X, so the elements of
∆′′ with non-empty intersection with W must also cover W. Because of this
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we need only show that any given element of ∆′′ intersects only finitely many
elements of X . Let let B ∈ ∆′′. If B intersects some element of X , VA ∩ WA

for some A ∈ ∆, then by definition of VA we have B ∩ (X \ A) = ∅. But then
B ∩A 6= ∅. But the elements of ∆′′ intersect only finitely many elements of ∆,
B can only intersect finitely many elements of X . Hence, X is a locally finite
open refinement of O that covers X.

Theorem 1.14. If (X, τ) is regular and Lindelöf, then it is paracompact.

Proof. Given a cover O, since (X, τ) is Lindelöf there is a countable subcover
∆. Since this is countable, it is also a σ locally finite open cover which is a
refinement of O, since it is a subset of it. It is σ locally finite since we can find
a surjection U : N → ∆ and letting ∆n = {Un }, we have ∆ =

⋃
n∈N ∆n. Each

∆n is locally finite since it is, well, finite. By a previous theorem, since (X, τ)
is regular, there is therefore a locally finite open refinement of ∆ that covers X.
So (X, τ) is paracompact.

Theorem 1.15 (Stone’s Paracompactness Theorem). If (X τ) is metriz-
able, then it is paracompact.

Proof. Since (X, τ) is metrizable, every open cover O has a σ locally finite open
cover X that is a refinement of O. By a previous theorem, since metrizable
spaces are regular, there is a locally finite open refinement of this that is an
open cover, and hence (X, τ) is paracompact.
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