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1 Metrization Theorems

So far the only metrization theorem we have is Urysohn’s. It makes use of nor-
mality. We know from homework that metrizable spaces are perfectly normal.
In improving Urysohn’s metrization theorem to one that contains necessary and
sufficient conditions we need to upgrade to perfect normality. From a few weeks
ago, a perfectly normal topological space is some space (X, τ) such that for all
disjoint closed subsets C,D ⊆ X there is a continuous function f : X → [0, 1]
such that C = f−1[{ 0 }] and D = f−1[{ 1 }]. Perfectly normal implies normal
(we proved this) and it also implies completely normal (every subspace is also
normal, we haven’t proven this). The reformulation we want is in terms of Gδ
sets.

Definition 1.1 (Gδ Set) A Gδ set in a topological space (X, τ) is a set A ⊆ X
such that there is a countable set O ⊆ τ such that A =

⋂
O. �

Theorem 1.1. If (X, τ) is a topological space, and if U ∈ τ , then U is a Gδ
set.

Proof. Let O = {U }. Then O is countable since it is finite, but also U =
⋂
O.

So U is a Gδ set.

Theorem 1.2. If (X, τ) is metrizable, and if C ⊆ X is closed, then it is a Gδ
set.

Proof. Since (X, τ) is metrizable, there is a metric d that induces τ . For all
n ∈ N define Un via:

Un =
⋃
x∈C

B
(X, d)

1
n+1

(x) (1)

Then Un is open, being the union of open sets. Also Un+1 ⊆ Un and C ⊆ Un for
all n ∈ N. Suppose x ∈

⋂
n∈N Un. Then for all n ∈ N there is an an ∈ C such

that d(x, an) < 1
n+1 . But then an → x. But (X, τ) is metrizable, and hence

sequential, so since C is closed, if a : N→ C is a convergent sequence with limit
x ∈ X, then x ∈ C. Hence

⋂
n∈N Un = C so C is a Gδ set.

This is part of the idea we wish to capture. We want closed sets to be Gδ sets.
Topological spaces with this property are given a name.
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Definition 1.2 (Gδ Topological Space) A Gδ topological space is a topolog-
ical space (X, τ) such that every closed subset C ⊆ X is a Gδ set. �

Theorem 1.3. If (X, τX) and (Y, τY ) are topological spaces, if f : X → Y is
continuous, and if A ⊆ Y is a Gδ set, then f−1[A] is a Gδ set.

Proof. Since A is a Gδ set there is a sequence V : N → τY such that A =⋂
n∈N Vn. But then:

f−1[A] = f−1
[ ⋂
n∈N
Vn
]

=
⋂
n∈N

f−1[Vn] (2)

But since f is continuous and Vn ∈ τY , we have that f−1[Vn] ∈ τX , and hence
f−1[A] is a Gδ set.

Theorem 1.4. If (X, τ) is a topological space, then it is perfectly normal if and
only if for all closed C ⊆ X there is a continuous function f : X → [0, 1] such
that C = f−1[{ 0 }].

Proof. If (X, τ) is perfectly normal, let D = ∅. Then C and D are disjoint closed
sets so there is a continuous function f : X → [0, 1] such that C = f−1[{ 0 }]
and D = f−1[{ 1 }]. So in particular, C = f−1[{ 0 }]. Now suppose (X, τ) is
such that for all closed C there is a continuous function f : X → [0, 1] such
that C = f−1[{ 0 }]. Given C,D closed and disjoint, let f be the corresponding
function for C and g the function for D. Define:

h(x) =
f(x)

f(x) + g(x)
(3)

This is well-defined since C ∩ D = ∅. For if x ∈ C, then f(x) = 0 so the
denominator is g(x) and g(x) > 0 for all x /∈ D. If x ∈ D then g(x) = 0, so
the denominator is f(x) and f(x) > 0 for all x /∈ C. If x /∈ C and x /∈ D then
f(x)+g(x) > 0. It is continuous since it is the quotient of continuous functions.
Lastly, h−1[{ 0 }] = C and h−1[{ 1 }] = D. For h(x) = 0 if and only if f(x) = 0
and hence x ∈ C. Also h(x) = 1 if and only if f(x) = f(x) + g(x) which is true
if and only if g(x) = 0, meaning x ∈ D. So (X, τ) is perfectly normal.

Perfect normality is equivalent to normal plus Gδ. To prove this requires the
topological version of one of the foundational theorems of real analysis.

Theorem 1.5. If (X, τ) is a topological space, if F : N→ C(X, R) is a sequence
of continuous functions, if f : X → R is such that for all x ∈ X it is true that
Fn(x)→ f(x), and if:

lim
n→∞

sup
x∈X
|Fn(x)− f(x)| = 0 (4)

then f is continuous.
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Proof. We use the equivalent definition of continuity that for all x ∈ X and for
all V ∈ τR such that f(x) ∈ V there is a U ∈ τ such that x ∈ U and f [U ] ⊆ V.
Let x ∈ X and V ∈ τR be such that f(x) ∈ V. Since V is open in R there is an
ε > 0 such that (f(x)−ε, f(x)+ε) ⊆ V. But then, since sup|Fn(x)−f(x)| → 0,
there is an N ∈ N such that for all n ∈ N with n ≥ N and for all x ∈ X we
have:

|Fn(x)− f(x)| < ε

3
(5)

But FN : X → [0, 1] is continuous, so there is an open set U ∈ τ such that
x ∈ U and f [U ] ⊆ (f(x)− ε/3, f(x) + ε/3). But then, for all x, y ∈ U , we have:

|f(x)− f(y)| = |f(x)− FN (x) + FN (x)− FN (y) + fN (y)− f(y)| (6)

≤ |f(x)− fN (x)|+ |FN (x)− FN (y)|+ |FN (y)− f(y)| (7)

<
ε

3
+
ε

3
+
ε

3
(8)

= ε (9)

and hence for all y ∈ U we have f(y) ∈ (f(x)− ε, f(x) + ε), so f [U ] ⊆ (f(x)−
ε, f(x) + ε), and hence f [U ] ⊆ V. Thus, f is continuous.

Theorem 1.6. If (X, τ) is a topological space, then it is perfectly normal if and
only if it is normal and a Gδ space.

Proof. Perfectly normal implies normal, we need only prove it implies Gδ as well.
Let C ⊆ X be closed. Since (X, τ) is perfectly normal, there is a continuous
function f : X → [0, 1] such that C = f−1[{ 0 }]. For all n ∈ N define:

Un = f−1
[
[0,

1

n+ 1
)
]

(10)

Since f is continuous, and since [0, 1
n+1 ) is open in the subspace topology for

[0, 1], Un is open. Also C ⊆ Un for all n ∈ N. Suppose x ∈
⋂
n∈N Un. Then

for all n ∈ N, f(x) ∈ [0, 1
n+1 ), and hence f(x) = 0. But then x ∈ C. Thus,

C =
⋂
n∈N Un so C is a Gδ set. That is, if (X, τ) is perfectly normal, then it is a

normal Gδ space. In the other direction, suppose (X, τ) is a normal Gδ space.
By a previous theorem to prove normality it suffices to show that for all closed
C ⊆ X there is a continuous function f : X → [0, 1] such that C = f−1[{ 0 }].
Since (X, τ) is a Gδ space and C is closed, there is a sequence U : N → τ
such that C =

⋂
n∈N Un. But then for all n ∈ N we have C ⊆ Un and hence

C ∩ (X \ Un) = ∅. But Un is open, so X \ Un is closed. By Urysohn’s lemma
there is a continuous function Fn : X → [0, 1] such that C ⊆ F−1n [{ 0 }] and
X \ Un ⊆ F−1n [{ 1 }]. Define:

f(x) =
1

2

∞∑
n=0

Fn(x)

2n
(11)

Then since 0 ≤ Fn(x) ≤ 1 for all n ∈ N and all x ∈ X, the nth term of this
sum is bounded by 1/2n, which converges to zero. By the previous theorem
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f is continuous. Since Fn(x) = 0 for all x ∈ C and all n ∈ N, we have that
f(x) = 0 for all x ∈ C. Suppose x /∈ C. Then there is a Un such that x /∈ Un,
since C =

⋂
n∈N Un. But then Fn(x) > 0, and hence f(x) > 0. So x /∈ f−1[{ 0 }].

That is, C = f−1[{ 0 }], so (X, τ) is perfectly normal.

The key to the Nagata-Smirnov theorem is σ locally finite bases. From a few
lectures ago, a σ locally finite cover of a topological space (X, τ) is a cover
O ⊆ τ such that there exists a sequence ∆ : N → P(τ) such that for all n ∈ N
it is true that ∆n ⊆ τ is a locally finite collection, and such that O =

⋃
n∈N ∆n.

σ locally finite basis just adds the word basis.

Definition 1.3 (σ Locally Finite Basis) A σ locally finite basis for a topo-
logical space (X, τ) is a basis B such that B is a σ locally finite open cover. �

Theorem 1.7. If (X, τ) is a regular topological space, if B is a σ locally finite
bases for τ , and if U ∈ τ , then there is a sequence V : N → τ such that
U =

⋃
n∈N Clτ (Vn).

Proof. Since B is a σ locally finite basis, there is a sequence ∆ : N→ P(τ) such
that for all n ∈ N it is true that ∆n is locally finite and such that B =

⋃
n∈N ∆n.

For all n ∈ N define An via:

An = {W ∈ Bn | Clτ (W) ⊆ U } (12)

Since ∆n is locally finite, so is An. Define Vn via:

Vn =
⋃
An (13)

Then Vn is open, being the union of open sets, and since An is locally finite we
have:

Clτ (Vn) = Clτ

(⋃
An
)

(14)

= Clτ

( ⋃
W∈An

W
)

(15)

=
⋃
W∈An

Clτ (W) (16)

But for all W ∈ An it is true that Clτ (W) ⊆ U by definition of An, and hence
Clτ (Vn) ⊆ U . Since this is true for all n ∈ N we have:⋃

n∈N
Clτ (Vn) ⊆ U (17)

But (X, τ) is regular and B is a basis. So given x ∈ X there is a W ∈ B such
that x ∈ W and W ⊆ U . From regularity there is a W ′ ∈ τ such that x ∈ W ′
and Clτ (W ′) ⊆ W. But again, since B is a basis, there is a W ′′ ∈ B such that
x ∈ W ′′ andW ′′ ⊆ W ′. But then x ∈ W ′′ and Clτ (W ′′) ⊆ U . SinceW ′′ ∈ B and
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B =
⋃
n∈N ∆n there is an n ∈ N such that W ′′ ∈ ∆n. But then, by definition of

An, W ′′ ∈ An and hence x ∈ Vn. From this we obtain:

U ⊆
⋃
n∈N

Clτ (Vn) (18)

Meaning U =
⋃
n∈N Clτ (Vn).

Theorem 1.8. If (X, τ) is a regular topological space, and if B is a σ locally
finite basis for τ , then (X, τ) is a Gδ space.

Proof. Let C ⊆ X be closed. Then X \ C is open. But since (X, τ) is regular
and B is a σ locally finite basis, there is a sequence U : N → τ such that
X \ C =

⋃
n∈N Clτ (Un). But then for all n ∈ N we have C ⊆ X \ Clτ (Un),

and hence C ⊆
⋂
n∈N

(
X \ Clτ (Un)

)
. Let x ∈

⋂
n∈N

(
X \ Clτ (Un)

)
and suppose

x /∈ C. Then x ∈ X \ C, so there is some n ∈ N such that x ∈ Clτ (Un). But
then x /∈ X \ Clτ (Un), which is a contradiction since x ∈

⋂
n∈N

(
X \ Clτ (Un)

)
.

So x ∈ C, and therefore C is the countable intersection of open sets, meaning
it is a Gδ set. So all closed subsets of X are Gδ sets, meaning (X, τ) is a Gδ
space.

Theorem 1.9. If (X, τ) is a regular topological space, and if B is a σ locally
finite basis for τ , then (X, τ) is perfectly normal.

Proof. Regularity and a σ locally finite basis implies (X, τ) is a Gδ space by
the previous theorem. To prove the space is perfectly normal we need only
prove it is normal, since (X, τ) is perfectly normal if and only if it is normal
and a Gδ space. Let C,D ⊆ X be disjoint closed sets. Then X \ C and X \ D
are disjoint open sets. But since (X, τ) is regular and has a σ locally finite
basis there are sequences U ,V : N → τ such that X \ C =

⋃
n∈N Clτ (Un) and

X \ D =
⋃
n∈N Clτ (Vn). Define Ũn and Ṽn via:

Ũn = Un \
n⋃
k=0

Clτ (Vn) (19)

Ṽn = Vn \
n⋃
k=0

Clτ (Un) (20)

Each Ũn and Ṽn is open since they are the set difference of a finite union of
closed sets (which is hence closed) from an open set. Since C is disjoint from each
Clτ (Un) we have that C ⊆

⋃
n∈N Ũn. Similarly for D with

⋃
n∈N Ṽn. Moreover,

by the construction given, Ũn and Ṽm are disjoint for all m,n ∈ N. But then⋃
n∈N Ũn and

⋃
n∈N Ṽn are disjoint open sets that cover D and C, respectively, so

(X, τ) is normal. But since (X, τ) is also a Gδ space, we conclude that (X, τ)
is perfectly normal.

The Nagata-Smirnov theorem is proved in a manner similar to the Urysohn
metrization theorem. For Urysohn’s theorem we used the fact that R∞, the
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countable product of R with itself, is metrizable metric metric d defined by:

d(a, b) =

∞∑
n=0

1

2n
|an − bn|

1 + |an − bn|
(21)

This also gives [0, 1]∞ a metric showing the countable product of the closed unit
interval is metrizable. The uncountable product of [0, 1] is not metrizable in the
product topology since it is not even first countable. We can give it a different
topology, called the uniform topology, that makes it metrizable. Indeed, the
topology is simply defined by a metric. Given any index set I we can topologize
[0, 1]I =

∏
α∈I [0, 1] via the metric:

d(x, y) = sup
({
|xα − yα|

∣∣ α ∈ I }) (22)

This topology does not need to be the product topology nor the box topology.
The usefulness comes from the fact that it gives us a metric on arbitrarily large
products. We prove the Nagata-Smirnov theorem by showing any metrizable
space can be embedded as a subspace of [0, 1]I for some index set I equipped
with the uniform topology.

Theorem 1.10 (The Nagata-Smirnov Metrization Theorem). If (X, τ)
is regular, Hausdorff, and has a σ locally finite basis B, then it is metrizable.

Proof. Since (X, τ) is regular and has a σ locally finite basis, it is perfectly
normal. But for all U ∈ B, since B is a basis, U is open, so X \ U is closed. But
since (X, τ) is perfectly normal there is a continuous function f̃U : X → [0, 1]
such that X \ U = f−1[{ 0 }]. For each n ∈ N define fn,U : X → [0, 1

n+1 ] via:

fn,U (x) =
1

n+ 1
f̃U (x) (23)

Then f−1n,U [{ 0 }] = X \ U as well since this is just a scaling of f̃U by a non-zero
constant. Define I via:

I = { fn,U | U ∈ B, n ∈ N } (24)

I can be indexed by N× B since fn,U corresponds to the ordered pair (n, f̃U ).
We define F : X → [0, 1]I via:

F (x) = α where α(n,U) = fn,U (x) (25)

We need to show F is an embedding. That is, it is a homeomorphism onto its
image. First, F is injective. If x, y ∈ X, x 6= y, then since (X, τ) is Hausdorff,
there are open sets Vx,Vy ∈ τ such that x ∈ Vx, y ∈ Vy, and Vx ∩ Vy = ∅. But
B is a basis so there is Ux,Uy ∈ B such that x ∈ Ux, Ux ⊆ Vx, and y ∈ Uy,
Uy ⊆ Vy. But then f0,Ux(x) 6= 0 and f0,Ux(y) = 0, so the (0, U) component of
F (x) and F (y) differ, hence F (x) 6= F (y). So F is injective. The function F is
an embedding with respect to the product topology, and the uniform topology
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is finer, meaning F : X → F [X] is an open mapping. All that’s left to prove is
that F is continuous. But [0, 1]I is a metrizable space when given the uniform
topology, so we just need to show for all x ∈ X and for all ε > 0 there is an
open set U ∈ τ such that x ∈ U and for all y ∈ U we have d(F (x), F (y)) < ε.
Since B is σ locally finite there are countably many sets ∆n, each of which is
locally finite, such that B =

⋃
n∈N ∆n. Given x ∈ X there is then an open set

Un such that x ∈ Un and only finitely many elements of ∆n intersect Un. But
each fn,V is continuous, so of the finitely many functions fn,V with V ∈ ∆n

where Un ∩V 6= ∅ we can find an open set Wn such that each function varies by
at most ε/2. Let N ∈ N be such that N > 2/ε. Let U be defined by:

U =

N⋂
k=0

Wk (26)

If n ∈ N and n ≤ N , then by how U is defined we have, for all V ∈ B and all
y ∈ U , the following:

|fn,V(x)− fn,V(y)| < ε

2
(27)

If n > N then, since fn,V has co-domain [0, 1
n+1 ], we have:

|fn,V(x)− fn,V(y)| ≤ 1

n+ 1
+

1

n+ 1
=

2

n+ 1
< ε (28)

But then, for all y ∈ U , we have:

d
(
F (x), F (y)

)
= sup

({
|fn,V(x)− fn,V(y)|

∣∣ (n, V) ∈ I
})

< ε (29)

and hence for all y ∈ U we have d(F (x), F (y)) < ε, so F is continuous. So
(X, τ) is homeomorphic to a subspace of [0, 1]I with the uniform topology,
which is metrizable, and hence (X, τ) is metrizable.

The converse of this theorem is true as well. The next metrization theorem is
Smirnov’s. It uses paracompactness in place of σ locally finite bases, and also
the property of local metrizability.

Definition 1.4 (Locally Metrizable Topological Space) A locally metriz-
able topological space is a topological space (X, τ) such that for all x ∈ X there
is a U ∈ τ such that x ∈ U and (U , τU ) is metrizable, where τU is the subspace
topology. �

Theorem 1.11 (The Smirnov Metrization Theorem). If (X, τ) is para-
compact, locally metrizable, and Hausdorff, then it is metrizable.

The converse of this is true as well. Metrizable implies Hausdorff and locally
metrizable. The only hard part is that metrizable implies paracompact, and
this is Stone’s theorem.
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