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1 Compactifications

Compact topological spaces are nice. Unlike the Hausdorff and first countable
conditions, which most of your every day spaces possess, compact is not as
common. Compact spaces are just too convenient. For example Rn is not
compact for all n > 0 by the Heine-Borel theorem. A compactification of a
topological space (X, τ) is a compact space (X̃, τ̃) that contains (X, τ) is an
embedded subspace. There are two common compactifications that are used
in topology and analysis, the one point compactification, and the Stone-Čech
compactification.

The one point compactification, also called the Alexandroff extension or the
Alexandroff compactification, takes (X, τ) and adds one point in a way that
makes it compact. This new point is often denoted ∞, but what if X already
had∞ as an element? Is there a way to guarantee we are adding a new element
to X that is not already contained in it? The axioms of set theory tell us if A
is a set, then A /∈ A, so we can form our new set Ã via A ∪ {A }.

Definition 1.1 (One Point Compactification) The one point compactifica-
tion of a topological space (X, τ) is the ordered pair (X̃, τ̃) where X̃ = X∪{X }
and τ̃ is defined by:

τ̃ =
{
U ⊆ X̃ | U ∈ τ or U = (X \ C) ∪ {X }, C compact and closed.

}
(1)

The new element {X } that is added is often denoted∞ (if we know the symbol
∞ does not already belong to X). The set τ̃ is thus the set of all open sets in
τ plus all complements of closed compact sets together with infinity. �

There are several theorems related to the one point compactification that we
lack the time to go over, so I’ll just present them.

� The one point compactification of a topological space is a topological space
(that is, τ̃ is a topology on X̃).

� (X, τ) is a subspace of (X̃, τ̃) and the inclusion map ι : X → X̃ is an
embedding.
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� The one point compactification of a topological space is compact.

� If (X, τ) is a non-compact topological space, then it is a dense subspace
of its one point compactification.

� The one point compactification of a topological space (X, τ) is Hausdorff
if and only if (X, τ) is locally compact and Hausdorff. The one point
compactification of Q is an example of a non-Hausdorff compactification,
even though Q is Hausdorff (it is not locally compact, however).

� The one point compactification of a topological space (X, τ) is Fréchet if
and only if (X, τ) is Fréchet.

The one point compactification makes the following theorem a lot easier.

Theorem 1.1. If (X, τ) is locally compact and Hausdorff, then it is regular.

Proof. Let (X̃, τ̃) be the one point compactification of (X, τ). Since (X, τ)
is locally compact and Hausdorff, (X̃, τ̃) is compact and Hausdorff. But then
(X̃, τ̃) is regular. But (X, τ) is a subspace of (X̃, τ̃), and a subspace of a regular
space is regular. Hence, (X, τ) is regular.

The Stone-Cěch compactification is another common tool used in analysis and
topology, but its description is a lot harder to convey. The simplest definition
is the spectrum of the set Cb(X, C) of bounded continuous functions from a
topological space (X, τ) into the complex numbers C, which is equipped with
the standard Euclidean topology of R2. A discussion of this idea would require
an excursion into analysis that we don’t have the time for, unfortunately. I will
mention that the Stone-Čech compactification allows one to describe completely
metrizable spaces.

Definition 1.2 (Completely Metrizable Topological Space) A completely
metrizable topological space is a topological space (X, τ) such that there is a
complete metric d on X that induces τ . �

Theorem 1.2. If (X, τ) is a metrizable topological space, then it is completely
metrizable if and only if it is a Gδ subspace of its Stone-Čech compactification.

Lastly, Stone spaces are compact totally disconnected Hausdorff topological
spaces. They arise in the study of the Stone-Čech compactification, but their
use is far broader. Every Boolean algebra (B, ∧, ∨) is represented by a Stone
space, and conversely every Stone space represents a Boolean algebra. Boolean
algebras capture the algebraic structure of logic. Think of propositions together
with and and or. Boolean algebras satisfy, for all P,Q,R ∈ B, the following:

P ∧Q = Q ∧ P P ∨Q = Q ∨ P (2)

P ∧ (Q ∧R) = (P ∧Q) ∧R P ∨ (Q ∨R) = (P ∨Q) ∨R (3)

P ∧ (Q ∨R) = (P ∧Q) ∨ (P ∧R) P ∨ (Q ∧R) = (P ∨Q) ∧ (P ∨R) (4)

P ∨ False = P P ∧ True = P (5)

P ∨ ¬P = True P ∧ ¬P = False (6)

So amazingly topology and logic become the same study.
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