
Point-Set Topology: Lecture 29

Ryan Maguire

Summer 2022

1 Locally Euclidean Topological Spaces

We now reach the final topic of the course, manifolds. More general than man-
ifolds, we start with locally Euclidean spaces.

Definition 1.1 (Locally Euclidean Topological Space) A locally Euclidean
topological space is a topological space (X, τ) such that for all x ∈ X there is
a U ∈ τ an n ∈ N, and an injective continuous open mapping ϕ : U → Rn such
that x ∈ U . �

Example 1.1 For all n ∈ N the Euclidean space Rn with the Euclidean topol-
ogy is locally Euclidean. For all x ∈ Rn choose U = Rn and f : Rn → Rn to be
the identity mapping f(x) = idRn(x) = x. �

Example 1.2 If U ⊆ Rn is an open subset with respect to the Euclidean
topology, then (U , τRn

U
) is locally Euclidean. Given x ∈ U define f : U → Rn

via f = idRn |U . Then f is injective and continuous, and since U is open, f is
also an open mapping. �

Example 1.3 The solution to y2−x2 = 0 in the plane is not locally Euclidean.
This forms an X, y = ±|x|. Every point except the origin is locally Euclidean,
locally looking like R. The origin is where this goes wrong. No matter how
much you zoom in it still locally looks like an X. This is certainly not locally
like R, but it’s also not 2 dimensional. Similarly, it’s not n dimensional for any
n ∈ N. Thus this subspace of R2 is not locally Euclidean. �

This example tells us that closed subspaces of locally Euclidean spaces do not
need to be locally Euclidean.

Example 1.4 The bug-eyed line is locally Euclidean, second countable, but
not Hausdorff. Every point other than the two origins is locally like R. The two
origins are also locally like R. See Fig. 1. �

Example 1.5 The branching line is another example of a non-Hausdorff space
that is locally Euclidean. The construction is similar to the bug-eyed line. Take
X ⊆ R2 to be the set of all points of the form (x, y) ∈ R2 such that x ∈ R
and y = ±1. Define (x0, y0)R(x1, y1) if and only if x0 = x1 and x0 < 0. The
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Figure 1: The Bug-Eyed Line

Figure 2: The Branching Line Construction
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Figure 3: The Branching Line is Locally Euclidean
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branching line is the quotient X/R with the quotient topology (See Fig. 2). Like
the bug-eyed line, it too is locally Euclidean, see Fig. 3. �

Example 1.6 The long line is locally Euclidean and Hausdorff, but not second
countable. It is also not paracompact. �

Example 1.7 As far as set theory is concerned, a function f : A → B from
a set A to a set B is a subset of A × B satisfying certain properties. We can
use this to define locally Euclidean topological spaces by looking at continuous
functions from Rm to Rn for some m,n ∈ N. Given f : Rm → Rn, continuous,
f ⊆ Rm × Rn can be given the subspace topology. This makes it a closed
subset since f is continuous. It is also a locally Euclidean subspace. For given(
x, f(x)

)
∈ f , let U = f and define F : f → Rm via:

F
(
(x, f(x)

)
= x (1)

This is just the projection of the elements of f ⊆ Rm×Rn onto Rm. Projections
are continuous. Let’s show F is injective and an open mapping. It is injective
since given: (

x0, f(x0)
)
6=
(
x1, f(x1)

)
(2)

we must have x0 6= x1 (since if x0 = x1, then f(x0) = f(x1) by definition of a
function). So then:

F
(
(x0, f(x0)

)
6= F

(
(x1, f(x1)

)
(3)

meaning F is injective. There is a continuous inverse F−1 : Rm → f given by:

F−1(x) =
(
x, f(x)

)
(4)

Since f is continuous, F−1 is continuous since both components are continuous.
So F is an open mapping and f is a locally Euclidean subspace of Rm×Rn. �

Example 1.8 S1 with the subspace topology from R2 is locally Euclidean.
We’ll show this in two ways. First, via orthographic projection. We split the
circle into four parts:

UNorth = { (x, y) ∈ S1 | y > 0 } (5)

USouth = { (x, y) ∈ S1 | y < 0 } (6)

UEast = { (x, y) ∈ S1 | x > 0 } (7)

UWest = { (x, y) ∈ S1 | x < 0 } (8)

See Fig. 4. Then we define four functions:

ϕNorth : UNorth → R ϕNorth

(
(x, y)

)
= x (9)

ϕSouth : USouth → R ϕSouth

(
(x, y)

)
= x (10)

ϕEast : UEast → R ϕEast

(
(x, y)

)
= y (11)

ϕWest : UWest → R ϕWest

(
(x, y)

)
= y (12)
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Figure 4: Cover of S1 with Locally Euclidean Sets

Since these are projection mappings, they are continuous. From how the four
open sets are defined, each is also injective. To show it is an open mapping we
just need to find a continuous inverse with respect to the image of these sets.
Note that for all four functions the range of (−1, 1). We have the following
inverse functions:

ϕ−1North(x) =
(
x,
√

1− x2
)

(13)

ϕ−1South(x) =
(
x, −

√
1− x2

)
(14)

ϕ−1East(y) =
(√

1− y2, y
)

(15)

ϕ−1West(y) =
(
−
√

1− y2, y
)

(16)

each of which is continuous since the square root function is continuous. The
four sets also cover S1, showing that S1 is locally Euclidean. �

This shows we can cover S1 using four sets each of which is homeomorphic to an
open subset of R. We can do better, only two sets are needed. Place an observer
at the north pole N = (0, 1). Given any other point (x, y) the line from the
observer to the point is not parallel to the x axis, meaning eventually it must
intersect it. Let’s solve for when. The line segment α(t) = (1 − t)N + t(x, y)
starts at the north pole at time t = 0 and ends at the point (x, y) on the circle
at time t = 1. The line intersects the x axis when the y component is zero.

4



Thus we wish to solve 1− t+ ty = 0 for t. We get:

t0 =
1

1− y (17)

The x coordinate at time t = t0 is then:

ϕN

(
(x, y)

)
=

x

1− y (18)

This is stereographic projection about the north pole. It is continuous since it is
a rational function. It is also bijective with a continuous inverse. Given X ∈ R
we can solve for the value (x, y) ∈ S1 that gets mapped to X by reversing the
previous process. The line β(t) = (1 − t)N + t(X, 0) starts at the north pole
and ends at (X, 0). We wish to solve for the time t when ||β(t)||2 = 1 which
corresponds to the moment the line intersects the circle. We have:

||β(t)||2 = ||(1− t)N + t(X, 0)||2 (19)

= ||(1− t)(0, 1) + t(X, 0)||2 (20)

= ||(tX, 1− t)||2 (21)

=
√

(tX)2 + (1− t)2 (22)

Solving for ||β(t)||2 = 1 is equivalent to solving ||β(t)||22 = 1 so we need to
consider the expression (tX)2 + (1− t)2. We get:

1 = (tX)2 + (1− t)2 (23)

= t2X2 + 1− 2t+ t2 (24)

= t2(1 +X2)− 2t+ 1 (25)

meaning we want to solve for t2(1+X2)−2t = 0. The solution t = 0 corresponds
to the North pole, which is not the one we want. Dividing through by t we get:

t1 =
2

1 +X2
(26)

The point (x, y) corresponds to β(t1) and is given by:

ϕ−1N (X) =
( 2X

1 +X2
,
−1 +X2

1 +X2

)
(27)

This function is continuous since it is a rational function in each component.
Because of this ϕN : S1 \ { (0, 1) } → R is a homeomorphism. Doing a similar
projection about the south pole shows that S1 can be covered by two open sets,
S1 \ { (0, 1) } and S1 \ { (0, −1) }, each of which is homeomorphic to R.

It is impossible to do this with one set. This is because S1 is not homeomorphic
to an open subset of R since S1 is compact and the only open subset of R that
is compact is the empty set, but S1 is non-empty. So two is the best we can do.
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Figure 5: Orthographic Projection of the Sphere

Example 1.9 The sphere Sn ⊆ Rn+1 is also locally Euclidean for all n ∈ N.
Define U±k ⊆ Sn via:

U+
k = {x ∈ Sn | xk > 0 } (28)

U−k = {x ∈ Sn | xk < 0 } (29)

These 2n + 2 open sets cover Sn and each is homeomorphic to an open subset
of Rn. Define ϕ±k : U±k → BRn

1 (0) via:

ϕ±k (x) = (x0, . . . , xk−1, xk+1, xn) (30)

That is, projecting down that kth axis. This is continuous with a continuous

inverse ϕ±k
−1

: BRn

1 (0)→ U±k given by:

ϕ±k
−1

(x) = (x0, . . . , xk−1, ±
√

1− ||x||22, xk, . . . , xn−1) (31)

This is also continuous, so Sn is locally Euclidean. �

These mappings are called orthographic projections. They are formed by placing
an observer at infinity and projecting what they see down to the plane. This is
shown in Fig. 5
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Figure 6: Stereographic Projection for the Sphere

Definition 1.2 (Topological Chart) A topological chart of dimension n in a
topological space (X, τ) about a point x ∈ X is an ordered pair (U , ϕ) such that
U ∈ τ , x ∈ U , and ϕ : U → Rn is an injective continuous open mapping. �

Locally Euclidean could equivalently be described as a topological space (X, τ)
such that for all x ∈ X there is a chart (U , ϕ) such that x ∈ U . A collection of
charts that covers a space is called an atlas.

Definition 1.3 (Topological Atlas) A topological atlas for a topological
space (X, τ) is a set A of topological charts in (X, τ) such that for all x ∈ X
there is a (U , ϕ) ∈ A such that x ∈ U . �

That is, an atlas is a collection of charts whose domains cover the space. Think
of an actual atlas used for navigating. The pages consist of various locations
on the globe, but only provides local information. To get information that is
more global requires piecing some of the charts of the atlas together. A locally
Euclidean space is a topological space (X, τ) such that there exists an atlas A
for it. We’ve shown that Sn can be covered by 2n+ 2 charts using orthographic
projection. We can do better using stereographic projection the same way we
did for S1. This is shown for S2 in Fig. 6.

There are two other types of projections that are useful for geometric reasons
in covering Sn. These are the near-sided and far-sided projections. Near-sided
projection is shown in Fig. 7. The idea is to take an observer and place them
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Figure 7: Near-Sided Projection of the Sphere

somewhere on the z axis above the sphere. The portion of the sphere that
is visible is then projected down to the xy plane. Far-sided projection is the
opposite. You place the observer at the same spot but remove everything that
can be seen. The result is a hollow semi-sphere. You then unwrap this on to the
plane to get the projection. This is shown in Fig. 8. Stereographic projection
is then just far-sided projection at the north pole, and orthographic projection
is far-sided projection at infinity.
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Figure 8: Far-Sided Projection of the Sphere
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