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1 Manifolds

So far we’ve seen several examples of locally Euclidean spaces.

� Rn for all n ∈ N.

� Open subspaces of Rn.

� The n sphere Sn

� The graphs of continuous functions f : Rm → Rn with the subspace
topology in Rm × Rn.

� The bug-eyed line.

� The branching line.

� The long line.

The first four are subspaces of Euclidean space, the last three are not. We
know these last three spaces cannot be embedded into Rn since the bug-eyed
and branching lines are not Hausdorff and all subspaces of Hausdorff spaces are
Hausdorff, and the long line is not second countable. Topological manifolds add
the Hausdorff property and second countability to ensure nothing too weird can
happen with the space.

Definition 1.1 (Topological Manifold) A topological manifold is a topolog-
ical space (X, τ) that is Hausdorff, second countable, and locally Euclidean.
That is, for all distinct x, y ∈ X there are open sets U ,V ∈ τ such that x ∈ U ,
y ∈ V, and U ∩V = ∅. There is also a countable basis B for the topology τ . And
for all x ∈ X there is a topological chart (U , ϕ) in (X, τ) such that x ∈ U . �

The word topological is added to manifold since there are several types of man-
ifolds. In many cases the adjective is dropped and context is required to know
which type of manifold is being talked about. A few of the other types of
manifold are listed below.

� Topological manifold: A type of topological space.
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� Smooth manifold: A topological manifold with extra structure so that it
is possible to ask if functions are differentiable and to speak of things like
tangent vectors and vector fields.

� Riemannian manifold: A smooth manifold that is equipped with a method
of assigning angles between tangent vectors, measuring lengths of curves,
and the area and volume of subspaces.

� Lorentz Manifold: A smooth manifold with, loosely speaking, a method
of differentiating between time and space. Lorentz manifolds fall into the
study of spacetime and general relativity.

� Semi-Riemannian manifold: A generalization of Lorentz and Riemannian
manifolds. In particular, all Lorentz and all Riemannian manifolds are
also semi-Riemannian manifolds.

We will talk about smooth manifolds briefly, since we actually have all of the
terminology to discuss them. We won’t dive too deep into the field however
since smooth manifolds belong to differential topology. Riemannian and Lorentz
manifolds belong to geometry, and we won’t have anything to say about those
(we also lack the algebraic terminology required to define them).

Example 1.1 Euclidean space Rn is a topological manifold. It is locally Eu-
clidean from the previous lecture, and it is also Hausdorff and second count-
able. �

Example 1.2 Any open subset U ⊆ Rn with the subspace topology is a topo-
logical manifold. It is locally Euclidean from the previous lecture, and since
subspaces of second countable Hausdorff spaces are still second countable and
Hausdorff, U is a topological manifold. �

Example 1.3 The n dimensional sphere Sn is a topological manifold. We used
orthographic, stereographic, near-sided, and far-sided projections last lecture to
show Sn is locally Euclidean in several different ways. Since the n sphere is a
subspace of Rn+1, it is second countable and Hausdorff. �

Example 1.4 The long line is not a topological manifold since it is not second
countable. It is locally Euclidean and Hausdorff, however. �

Example 1.5 The bug-eyed line is not a topological manifold. It is second
countable and locally Euclidean, but it is not Hausdorff. �

Example 1.6 Similarly, the branching line is not a topological manifold since
it is not Hausdorff. �

I would like to think the real reason for the Hausdorff and second countability
requirements is so that we can perhaps hope that topological manifolds are
really just particular subspaces of Rn. From the definition there is no such
requirement and topological manifolds can be considered as abstract objects
that do not live in any ambient Euclidean space. This can be quite useful. The
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spacetime of general relativity is a four dimensional topological manifold (it’s
actually a Lorentz manifold, but let’s not dive into that). Whether or not it is
possible to embed spacetime into some higher dimensional Euclidean space or
not seems irrelevant to any physical problem one might study. For the curious,
it is indeed possible to embed a four dimensional spacetime into R8. What
purpose eight dimensional Euclidean space may serve for any physics problems
is beyond me.

We now arrive at our first set of spaces that are not obviously some subspace
of Rn. These are the real projective spaces and are denoted RPn.

Example 1.7 (Real Projective Space) Let X = Rn+1 \ {0 }. Define the
equivalence relation R on X via xRy if and only if y = λx for some λ ∈ R\{ 0 }.
RPn is the set X/R and the topology τRPn is the quotient topology induced by
R. As a set this is the set of all lines in Rn+1 that pass through the origin.
That is, a point [x] ∈ RPn is the entire line through the origin that passes
through the point x. Let’s start with RP1. Any line can be described by an
angle 0 ≤ θ < π. If you vary the line you are on slightly, you are just varying
this angle. Hopefully it becomes intuitive that RP1 is in fact a one dimensional
locally Euclidean space (it may not be intuitive as to why it is Hausdorff or
second countable, but we’ll get there). A similar thinking applies to RPn. Let’s
be precise. Let Uk ⊆ X be defined by:

Uk = {x ∈ Rn+1 \ {0 } | xk 6= 0 } (1)

This is the complement of the kth axis, which is open since the kth axis is closed.
It is also saturated with respect to the canonical quotient map q : X → RPn

defined by q(x) = [x]. That is, q−1
[
q[Uk]

]
= Uk. It is always the case that Uk ⊆

q−1
[
q[Uk]

]
, let’s show this reverses for our particular set Uk. Let x ∈ q−1

[
q[Uk]

]
.

Then [x] ∈ q
[
Uk

]
so there is some y ∈ Uk such that [x] = [y]. But then yk 6= 0

and x = λy for some λ ∈ R \ { 0 }. But then xk 6= 0, and hence x ∈ Uk. So Uk
is saturated. But since q is a quotient map, if Uk is open and saturated, the set
Ũk = q[Uk] is open. Define ϕk : Ũk → Rn via:

ϕk

(
[x]

)
=

(x0

xk
, . . . ,

xk−1

xk
,

xk+1

xk
, . . . ,

xn

xk

)
(2)

We have to prove this is well-defined in two regards. First, there is no division
by zero since x ∈ Uk implies xk 6= 0. Second, this is well defined as a function.
By that I mean if [x] = [y], then there is some λ ∈ R \ { 0 } such that y = λx.
But then:

ϕk

(
[y]

)
=

(y0

yk
, . . . ,

yk−1

yk
,

yk+1

yk
, . . . ,

yn

yk

)
(3)

=
(λx0

λxk
, . . . ,

λxk−1

λxk
,
λxk+1

λxk
, . . . ,

λxn

λxk

)
(4)

=
(x0

xk
, . . . ,

xk−1

xk
,

xk+1

xk
, . . . ,

xn

xk

)
(5)

= ϕk

(
[x]

)
(6)
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So it is well-defined. It is also continuous. This is one of the characteristics of the
quotient map. Given a topological space (Y, τY ) and a function f : X/R→ Y ,
f is continuous if and only if f ◦ q : X → Y is continuous where q : X → X/R
is the canonical quotient map. The composition ϕk ◦ q is a rational function,
which is continuous, so ϕk is continuous. The inverse function is given by:

ϕ−1
k (x) =

[
(x0, . . . , xk−1, 1, xk, . . . , xn−1)

]
(7)

which is continuous since the function f : Rn → Rn+1 \ {0 } defined by:

f(x) = (x0, . . . , xk−1, 1, xk, . . . , xn−1) (8)

is continuous, so ϕ−1
k is the composition of continuous functions. Since the sets

Uk cover Rn+1 \ {0 }, the sets Ũk also cover RPn. Because of this RPn is locally
Euclidean. It is also second countable since it can be covered with finitely many
open sets each of which is homeomorphic to an open subset of Rn, which is
hence second countable. Since RPn is the finite union of second countable open
subspaces, it is second countable itself. It is also Hausdorff. Given [x] 6= [y] we
have that y is not of the form λx for any real number, meaning x and y lie on
different lines through the origin. Let θ be defined by:

θ =
1

4
arccos

( x · y
||x||2 ||y||2

)
(9)

θ is one-fourth the angle made between the lines through the origin spanned by
x and y. Let U and V be defined by:

U =
{

z ∈ Rn+1 \ {0 } | ](x, z) < θ
}

(10)

V =
{

z ∈ Rn+1 \ {0 } | ](y, z) < θ
}

(11)

Where ](p, q) is the angle between the non-zero vectors p and q. These sets
are open cones in Rn+1 \ {0 } (Fig. 1) which are also saturated with respect to
q, and by the choice of θ they are disjoint. But then Ũ = q[U ] and Ṽ = q[V]
are disjoint open subsets of RPn such that [x] ∈ Ũ and [y] ∈ Ṽ. Hence RPn is
Hausdorff. The real projective space is therefore a topological manifold. �

The elements of RPn are equivalence classes of Rn+1 \ {0 }. A point in RPn is
a line in Rn+1 through the origin. It is not immediately clear that RPn can be
embedded as a subspace of RN for some N ∈ N. It indeed can, in fact RPn can
be embedded into R2n for all n > 0, but this is by no means obvious. The case
n = 1 is slightly obvious if you really think about what RP1 is (it’s just a circle
S1). The case RP2 is less obvious (RP2 is not a sphere). We can not embed the
real projective plane into R3, unlike the sphere. If we try we’ll end up with a
surface that must intersect itself. This is shown in Fig. 2. This representation
is known as the cross cap. We can do better than this. The cross cap has a
crease in it, and this can be removed. David Hilbert, one of the pioneering
mathematicians of the early 20th century, thought it impossible to draw the
real projective plane in R3 in such a way that it has no crease. He asked his
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Figure 1: RPn is Hausdorff

Figure 2: The Real Projective Plane
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Figure 3: The Boy Surface

student Werney Boy to try and prove this. Instead Boy discovered a method
of drawing the real projective plane in R3 that has no crease (it is still self
intersecting). This is called the Boy surface. It is shown in Fig. 3. Bryant and
Kusner discovered a way to do this using somewhat simpler functions involving
complex variables. The Bryant-Kusner parameteriation is shown in Fig. 4.
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Figure 4: The Bryant-Kusner Parameterization of the Boy Surface
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