Point-Set Topology: Lecture 30

Ryan Maguire

Summer 2022

1 The Topology of Manifolds

In these notes we will prove some facts about the basic topology of manifolds. For convenience, these results are summarized below.

Topological manifolds are:

- Locally compact.
- Locally metrizable.
- Regular
- Metrizable.
- Paracompact.
- Lindelöf.
- Have a countable basis of precompact coordinate balls.
- σ compact.
- Compactly exhaustible.
- Locally connected.
- Locally path-connected.
- Connected if and only if path connected.

Our goal is to prove all of these claims. But we won't add a condition if it's not needed. For example, locally Euclidean implies locally compact, there is no need to add the Hausdorff and second countability requirements.

Theorem 1.1. If (X, τ) is a topological space, then it is locally Euclidean if and only if for all $x \in X$ there is a $\mathcal{U} \in \tau$ such that $x \in \mathcal{U}$ and $(\mathcal{U}, \tau_{\mathcal{U}})$ is homeomorphic to $B_1^{\mathbb{R}^n}(\mathbf{0})$ for some $n \in \mathbb{N}$. Proof. If (X, τ) is locally Euclidean, then for all $x \in X$ there is a $\mathcal{U} \in \tau$ such that $x \in \mathcal{U}$, and there is an $n \in \mathbb{N}$ and a continuous injective open mapping $f : \mathcal{U} \to \mathbb{R}^n$. But since f is an open mapping, $f[\mathcal{U}] \subseteq \mathbb{R}^n$ is open. But $f(x) \in f[\mathcal{U}]$ so there is an $\varepsilon > 0$ such that $||\mathbf{y} - f(x)||_2 < \varepsilon$ implies $\mathbf{y} \in f[\mathcal{U}]$. Let $\tilde{\mathcal{V}}$ be the ε centered at f(x) and $\mathcal{V} = f^{-1}[\tilde{\mathcal{V}}]$. Then $\mathcal{V} \subseteq \mathcal{U}$ is open since f is continuous. Moreover $f|_{\mathcal{V}} : \mathcal{V} \to \tilde{\mathcal{V}}$ is a continuous bijective open mapping, which is therefore a homeomorphism. But $\tilde{\mathcal{V}}$ is an open ball in \mathbb{R}^n of non-zero radius, and such a ball is homeomorphic to $B_1^{\mathbb{R}^n}(\mathbf{0})$ via:

$$g(\mathbf{x}) = \frac{1}{\varepsilon} (\mathbf{x} - \mathbf{x}_0) \tag{1}$$

where $\varepsilon > 0$ is the radius and \mathbf{x}_0 is the center. Since homeomorphic is a transitive notion, \mathcal{V} is homeomorphic to $B_1^{\mathbb{R}^n}(\mathbf{0})$ and $x \in \mathcal{V}$. In the other direction, if $x \in X$ implies there is an open set $\mathcal{U} \in \tau$ such that $x \in \mathcal{U}$ and $(\mathcal{U}, \tau_{\mathcal{U}})$ is homeomorphic to the open ball in \mathbb{R}^n , then there is a homeomorphism $f : \mathcal{U} \to B_1^{\mathbb{R}^n}(\mathbf{0})$. But then, in particular, $f : \mathcal{U} \to \mathbb{R}^n$ is an injective continuous open mapping. Hence, (X, τ) is locally Euclidean.

Theorem 1.2. If (X, τ) is a topological space, then it is locally Euclidean if and only if for all $x \in X$ there is a $\mathcal{U} \in \tau$ such that $x \in \mathcal{U}$ and $(\mathcal{U}, \tau_{\mathcal{U}})$ is homeomorphic to \mathbb{R}^n .

Proof. By the previous theorem (X, τ) is locally Euclidean if and only if for all $x \in X$ there is a $\mathcal{U} \in \tau$ such that $x \in \mathcal{U}$ and $(\mathcal{U}, \tau_{\mathcal{U}})$ is homeomorphic to $B_1^{\mathbb{R}^n}(\mathbf{0})$. But the open unit ball in \mathbb{R}^n is homeomorphic to \mathbb{R}^n via:

$$f(\mathbf{x}) = \frac{\mathbf{x}}{1 - ||\mathbf{x}||_2} \tag{2}$$

and hence (X, τ) is locally Euclidean if and only if for all $x \in X$ there is a $\mathcal{U} \in \tau$ such that $x \in \mathcal{U}$ and $(\mathcal{U}, \tau_{\mathcal{U}})$ is homeomorphic to \mathbb{R}^n .

Definition 1.1 (Coordinate Ball) A coordinate ball in a topological space (X, τ) is an open set $\mathcal{U} \in \tau$ that is homeomorphic to \mathbb{R}^n (or, equivalently, homeomorphic to the unit ball $B_1^{\mathbb{R}^n}(\mathbf{0})$).

Theorem 1.3. If (X, τ) is locally Euclidean, then there is a basis \mathcal{B} of τ consisting only of coordinate balls.

Proof. Let \mathcal{B} be the set of all coordinate balls in (X, τ) . By the previous theorems this set is an open cover of X. It is also a basis. For given $\mathcal{U} \in \tau$ and $x \in \mathcal{U}$, since $x \in X$ there is a coordinate ball $\mathcal{V} \in \tau$ such that $x \in \mathcal{V}$. But then there is a homeomorphism $f: \mathcal{V} \to \mathbb{R}^n$ for some $n \in \mathbb{N}$. Since \mathcal{U} is open, $\mathcal{U} \cap \mathcal{V} \subseteq \mathcal{V}$ is open. But then, since f is a homeomorphism, $f[\mathcal{U} \cap \mathcal{V}]$ is an open subset of \mathbb{R}^n . And since $x \in \mathcal{U} \cap \mathcal{V}$ we have $f(x) \in f[\mathcal{U} \cap \mathcal{V}]$. So there is an $\varepsilon > 0$ such that the open ball of radius ε centered at f(x) sits inside of $f[\mathcal{U} \cap \mathcal{V}]$. Label this open ball as $\tilde{\mathcal{W}}$. But then $\mathcal{W} = f^{-1}[\tilde{\mathcal{W}}]$ is a coordinate ball in (X, τ) , so $\mathcal{W} \in \mathcal{B}$, and it is such that $x \in \mathcal{W}$ and $\mathcal{W} \subseteq \mathcal{V}$. Therefore \mathcal{B} is a basis. \Box **Theorem 1.4.** If (X, τ) is locally Euclidean and Lindelöf, then there is a countable basis \mathcal{B} of coordinate balls for τ . In particular, (X, τ) is second countable.

Proof. Let \mathcal{B} be the set of all coordinate ball in (X, τ) . By the previous theorem this is a basis, and hence an open cover of X. But (X, τ) is Lindelöf so there is a countable subcover $\Delta \subseteq \mathcal{B}$. Then for all $\mathcal{U} \in \Delta$ we have that \mathcal{U} is a coordinate ball, so homeomorphic to \mathbb{R}^n . But \mathbb{R}^n has a countable basis consisting of open balls, meaning $\mathcal{U} \in \Delta$ has a countable basis of coordinate balls. Let $\mathcal{B}_{\mathcal{U}}$ be such a basis for \mathcal{U} and define:

$$\mathcal{B} = \bigcup_{\mathcal{U} \in \Delta} B_{\mathcal{U}} \tag{3}$$

This is the countable union (since Δ is countable) of countable sets (since each $\mathcal{B}_{\mathcal{U}}$ is countable) and hence \mathcal{B} is countable. It is also a basis since each $\mathcal{B}_{\mathcal{U}}$ is a basis for \mathcal{U} and the set of all $\mathcal{U} \in \Delta$ cover X. Hence \mathcal{B} is a countable basis of coordinate balls. Since it is a countable basis, (X, τ) is second countable. \Box

Definition 1.2 (Precompact) A precompact subset of a topological space (X, τ) is a subset $A \subseteq X$ such that $\operatorname{Cl}_{\tau}(A)$ is compact.

Theorem 1.5. If (X, τ) is locally Euclidean and Hausdorff, then for all $x \in X$ there is a precompact coordinate ball $U \in \tau$ such that $x \in U$.

Proof. Since (X, τ) is locally Euclidean, then is a coordinate ball $\mathcal{V} \in \tau$ such that $x \in \mathcal{V}$. Let $f: \mathcal{V} \to \mathbb{R}^n$ be a homeomorphism such that $f(x) = \mathbf{0}$ (we can always do this by translating). Let $\tilde{\mathcal{U}} = B_1^{\mathbb{R}^n}(\mathbf{0})$ and $\mathcal{U} = f^{-1}[\tilde{\mathcal{U}}]$. Then, since f is a homeomorphism it is continuous, so $\mathcal{U} \subseteq \mathcal{V}$ is an open subset. But $\operatorname{Cl}_{\tau_{\mathbb{R}^n}}(\tilde{\mathcal{V}})$ is compact, since it is the closed unit ball in \mathbb{R}^n . So $f^{-1}[\operatorname{Cl}_{\tau_{\mathbb{R}^n}}(\tilde{\mathcal{V}})]$ is a compact subset of \mathcal{U} since f is a homeomorphisn, and since (X, τ) is Hausdorff, this set is a closed subset as well. But then:

$$f^{-1}[\operatorname{Cl}_{\tau_{\mathbb{R}^n}}(\mathcal{V})] = \operatorname{Cl}_{\tau_{\mathcal{U}}}(\mathcal{V})$$
(4)

$$= \operatorname{Cl}_{\tau}(\mathcal{V}) \tag{5}$$

and hence $\mathcal{V} \subseteq X$ is a precompact coordinate ball that contains x.

Note in the previous theorem we considered the closure with respect to three different topologies. First, the standard Euclidean topology in \mathbb{R}^n . Next, the subspace topology of the open set \mathcal{U} . Lastly, the topology on X. Since X is Hausdorff, $\operatorname{Cl}_{\tau_{\mathcal{U}}}(\mathcal{V})$ being compact implies it is closed. Because of this the closure with respect to the subspace topology $\tau_{\mathcal{U}}$ is the same as the closure with respect to the ambient topology τ , meaning \mathcal{V} is precompact in (X, τ) . The Hausdorff property is essential. Without it the closure with respect to the subpace \mathcal{U} and the entire space X may be very different, and $\operatorname{Cl}_{\tau}(X)$ might fail to be compact.

Theorem 1.6. If (X, τ) is locally Euclidean and Hausdorff, then there is a basis \mathcal{B} of precompact coordinate balls.

Proof. Let \mathcal{B} be the set of all precompact coordinate balls in (X, τ) . By the previous theorem \mathcal{B} is an open cover. It is also a basis. Given $\mathcal{U} \in \tau$ and $x \in \mathcal{U}$ we can find a precompact coordinate ball $\mathcal{V} \in \mathcal{B}$ such that $x \in \mathcal{V}$. That is, there is a homeomorphism $f : \mathcal{V} \to \mathbb{R}^n$. Since $x \in \mathcal{U} \cap \mathcal{V}$, and since f is a homeomorphism, $f[\mathcal{U} \cap \mathcal{V}]$ is an open subset of \mathbb{R}^n and $f(x) \in f[\mathcal{U} \cap \mathcal{V}]$. So there is an $\varepsilon > 0$ such that the ε ball about f(x) is a subset of $f[\mathcal{U} \cap \mathcal{V}]$. Let $\tilde{\mathcal{W}}$ be the ε ball centered about f(x). Then $\mathcal{W} = f^{-1}[\tilde{\mathcal{W}}]$ is a coordinate ball that sits inside of $\mathcal{U} \cap \mathcal{V}$, and since \mathcal{V} is precompact, \mathcal{W} is precompact as well since $\operatorname{Cl}_{\tau}(\mathcal{W}) \subseteq \operatorname{Cl}_{\tau}(\mathcal{V})$. Hence \mathcal{W} is a precompact coordinate ball such that $x \in \mathcal{W}$ and $\mathcal{W} \subseteq \mathcal{U}$. Therefore \mathcal{B} is a basis for τ .

Theorem 1.7. If (X, τ) is a topological manifold, then it is Lindelöf.

Proof. By definition topological manifolds are second countable. But second countable spaces are Lindelöf, and hence (X, τ) is Lindelöf.

Theorem 1.8. If (X, τ) is a topological manifold, then there exists a countable basis \mathcal{B} of τ consisting of precompact coordinate balls.

Proof. The proof is now a combination of a few previous ideas. We just proved there is a basis \mathcal{B} of precompact coordinate balls. Since topological manifolds are Lindelöf, there is a countable subcover $\Delta \subseteq \mathcal{B}$. So countably many precompact coordinate balls cover X, each of which has a countable basis of precompact coordinate balls. The union of all of these bases for every element of Δ is a basis for τ , and since it is the countable union of countable sets, this union is countable itself. So τ has a countable basis of precompact coordinate balls. \Box

Theorem 1.9. If (X, τ) is locally Euclidean, then it is locally metrizable.

Proof. Every point $x \in X$ has an open set $\mathcal{U} \in \tau$ such that $x \in \mathcal{U}$ and \mathcal{U} is homeomorphic to \mathbb{R}^n for some $n \in \mathbb{N}$. But \mathbb{R}^n is metrizable, the topology being induced by the Euclidean metric, so \mathcal{U} is a metrizable subspace of (X, τ) that contains x. Hence, (X, τ) is locally metrizable.

Theorem 1.10. If (X, τ) is locally Euclidean, then it is locally compact.

Proof. Let $x \in X$. Since (X, τ) is locally Euclidean, there is a coordinate ball $\mathcal{U} \in \tau$ such that $x \in \mathcal{U}$ and \mathcal{U} is homeomorphic to \mathbb{R}^n . Let $f : \mathbb{R}^n \to \mathcal{U}$ be a homeomorphism. Then in particular $f : \mathbb{R}^n \to X$ is an injective continuous open mapping. Let $\tilde{\mathcal{V}}$ be the open ball of radius 1 centered about f(x) and let \tilde{K} be the closed ball of radius 1 centered at f(x). Then $\tilde{\mathcal{V}} \subseteq \tilde{K}$. By the Heine-Borel theorem \tilde{K} is compact. But then, since f is continuous, $K = f[\tilde{K}] \subseteq X$ is compact. Let $\mathcal{V} = f[\tilde{\mathcal{V}}]$. Since $\tilde{\mathcal{V}}$ is open and f is an open mapping, $\mathcal{V} \subseteq \mathcal{U}$ is open. But $x \in \mathcal{V}$ and $\mathcal{V} \subseteq K$. Hence, (X, τ) is locally compact.

Theorem 1.11. If (X, τ) is locally Euclidean and Hausdorff, then it is regular.

Proof. Since (X, τ) is locally Euclidean, it is locally compact. But locally compact Hausdorff spaces are regular, and hence (X, τ) is regular.

Theorem 1.12. If (X, τ) is a topological manifold, then it is metrizable.

Proof. Since (X, τ) is a topological manifold, it is Hausdorff and second countable by definition. But topological manifolds are also locally Euclidean and locally Euclidean Hausdorff spaces are regular. Hence (X, τ) is regular, Hausdorff, and second countable, so by Urysohn's metrization theorem it is metrizable. \Box

Theorem 1.13. If (X, τ) is a topological manifold, then it is paracompact.

Proof. Since (X, τ) is a topological manifold, it is metrizable. But by Stone's theorem metrizable spaces are paracompact. Hence, (X, τ) is paracompact. \Box

Theorem 1.14. If (X, τ) is locally Euclidean, Hausdorff, and paracompact, then it is metrizable.

Proof. Since locally Euclidean space are locally metrizable, (X, τ) is a locally metrizable Hausdorff space that is paracompact. By Smirnov's theorem, (X, τ) is metrizable.

Theorem 1.15. If (X, τ) is a topological manifold, then it is σ compact.

Proof. Since (X, τ) is a topological manifold, there is a countable basis \mathcal{B} of precompact coordinate balls. Let $\mathcal{U} : \mathbb{N} \to \mathcal{B}$ be a surjection. Then, since \mathcal{B} is a basis, we have $X = \bigcup_{n \in \mathbb{N}} \mathcal{U}_n$. But also, since all elements of \mathcal{B} are precompact, for all $n \in \mathbb{N}$ it is true that $\operatorname{Cl}_{\tau}(\mathcal{U}_n)$ is compact. Let $K_n = \operatorname{Cl}_{\tau}(\mathcal{U}_n)$. Then each K_n is compact and $\bigcup_{n \in \mathbb{N}} K_n = X$. Hence (X, τ) is σ compact. \Box

Theorem 1.16. If (X, τ) is a topological manifold, it is compactly exhaustible.

Proof. Since (X, τ) is a topological manifold, it is σ compact. But topological manifolds are also Hausdorff and locally compact. But locally compact Hausdorff spaces that are σ compact are compactly exhaustible. Hence, (X, τ) is compactly exhaustible.

We've already stated this theorem, but let's prove it again.

Theorem 1.17. If (X, τ) is a topological manifold, then it is paracompact.

Proof. Since (X, τ) is a topological manifold, it is compactly exhaustible. But compactly exhaustible Hausdorff spaces are paracompact. Hence, (X, τ) is paracompact.

The connectedness theorems come from the locally Euclidean property.

Theorem 1.18. If (X, τ) is locally Euclidean, then it is locally connected.

Proof. Since (X, τ) is locally Euclidean it has a basis of coordinate balls. But coordinate balls are connected, so (X, τ) is locally connected.

Theorem 1.19. If (X, τ) is locally Euclidean, then it is locally path connected.

Proof. Since (X, τ) is locally Euclidean it has a basis of coordinate balls. But coordinate balls are path connected, so (X, τ) is locally path connected. \Box

Theorem 1.20. If (X, τ) is locally Euclidean, then it is connected if and only if it is path connected.

Proof. Path connected always implies connected. If (X, τ) is locally Euclidean and connected, then since locally Euclidean spaces are locally path connected, (X, τ) must be path connected.