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1 The Topology of Manifolds

In these notes we will prove some facts about the basic topology of manifolds.
For convenience, these results are summarized below.

Topological manifolds are:

� Locally compact.

� Locally metrizable.

� Regular

� Metrizable.

� Paracompact.

� Lindelöf.

� Have a countable basis of precompact coordinate balls.

� σ compact.

� Compactly exhaustible.

� Locally connected.

� Locally path-connected.

� Connected if and only if path connected.

Our goal is to prove all of these claims. But we won’t add a condition if it’s
not needed. For example, locally Euclidean implies locally compact, there is no
need to add the Hausdorff and second countability requirements.

Theorem 1.1. If (X, τ) is a topological space, then it is locally Euclidean if
and only if for all x ∈ X there is a U ∈ τ such that x ∈ U and (U , τU ) is
homeomorphic to BRn

1 (0) for some n ∈ N.
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Proof. If (X, τ) is locally Euclidean, then for all x ∈ X there is a U ∈ τ such
that x ∈ U , and there is an n ∈ N and a continuous injective open mapping
f : U → Rn. But since f is an open mapping, f [U ] ⊆ Rn is open. But
f(x) ∈ f [U ] so there is an ε > 0 such that ||y − f(x)||2 < ε implies y ∈ f [U ].
Let Ṽ be the ε centered at f(x) and V = f−1[Ṽ]. Then V ⊆ U is open since f
is continuous. Moreover f |V : V → Ṽ is a continuous bijective open mapping,
which is therefore a homeomorphism. But Ṽ is an open ball in Rn of non-zero
radius, and such a ball is homeomorphic to BRn

1 (0) via:

g(x) =
1

ε
(x− x0) (1)

where ε > 0 is the radius and x0 is the center. Since homeomorphic is a transitive
notion, V is homeomorphic to BRn

1 (0) and x ∈ V. In the other direction, if x ∈ X
implies there is an open set U ∈ τ such that x ∈ U and (U , τU ) is homeomorphic
to the open ball in Rn, then there is a homeomorphism f : U → BRn

1 (0). But
then, in particular, f : U → Rn is an injective continuous open mapping. Hence,
(X, τ) is locally Euclidean.

Theorem 1.2. If (X, τ) is a topological space, then it is locally Euclidean if
and only if for all x ∈ X there is a U ∈ τ such that x ∈ U and (U , τU ) is
homeomorphic to Rn.

Proof. By the previous theorem (X, τ) is locally Euclidean if and only if for
all x ∈ X there is a U ∈ τ such that x ∈ U and (U , τU ) is homeomorphic to
BRn

1 (0). But the open unit ball in Rn is homeomorphic to Rn via:

f(x) =
x

1− ||x||2
(2)

and hence (X, τ) is locally Euclidean if and only if for all x ∈ X there is a U ∈ τ
such that x ∈ U and (U , τU ) is homeomorphic to Rn.

Definition 1.1 (Coordinate Ball) A coordinate ball in a topological space
(X, τ) is an open set U ∈ τ that is homeomorphic to Rn (or, equivalently,
homeomorphic to the unit ball BRn

1 (0)). �

Theorem 1.3. If (X, τ) is locally Euclidean, then there is a basis B of τ con-
sisting only of coordinate balls.

Proof. Let B be the set of all coordinate balls in (X, τ). By the previous
theorems this set is an open cover of X. It is also a basis. For given U ∈ τ
and x ∈ U , since x ∈ X there is a coordinate ball V ∈ τ such that x ∈ V. But
then there is a homeomorphism f : V → Rn for some n ∈ N. Since U is open,
U ∩ V ⊆ V is open. But then, since f is a homeomorphism, f [U ∩ V] is an open
subset of Rn. And since x ∈ U ∩V we have f(x) ∈ f [U ∩V]. So there is an ε > 0
such that the open ball of radius ε centered at f(x) sits inside of f [U ∩V]. Label
this open ball as W̃. But then W = f−1[W̃] is a coordinate ball in (X, τ), so
W ∈ B, and it is such that x ∈ W and W ⊆ V. Therefore B is a basis.
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Theorem 1.4. If (X, τ) is locally Euclidean and Lindelöf, then there is a count-
able basis B of coordinate balls for τ . In particular, (X, τ) is second countable.

Proof. Let B be the set of all coordinate ball in (X, τ). By the previous theorem
this is a basis, and hence an open cover of X. But (X, τ) is Lindelöf so there is
a countable subcover ∆ ⊆ B. Then for all U ∈ ∆ we have that U is a coordinate
ball, so homeomorphic to Rn. But Rn has a countable basis consisting of open
balls, meaning U ∈ ∆ has a countable basis of coordinate balls. Let BU be such
a basis for U and define:

B =
⋃
U∈∆

BU (3)

This is the countable union (since ∆ is countable) of countable sets (since each
BU is countable) and hence B is countable. It is also a basis since each BU is a
basis for U and the set of all U ∈ ∆ cover X. Hence B is a countable basis of
coordinate balls. Since it is a countable basis, (X, τ) is second countable.

Definition 1.2 (Precompact) A precompact subset of a topological space
(X, τ) is a subset A ⊆ X such that Clτ (A) is compact. �

Theorem 1.5. If (X, τ) is locally Euclidean and Hausdorff, then for all x ∈ X
there is a precompact coordinate ball U ∈ τ such that x ∈ U .

Proof. Since (X, τ) is locally Euclidean, then is a coordinate ball V ∈ τ such
that x ∈ V. Let f : V → Rn be a homeomorphism such that f(x) = 0 (we can
always do this by translating). Let Ũ = BRn

1 (0) and U = f−1[Ũ ]. Then, since f
is a homeomorphism it is continuous, so U ⊆ V is an open subset. But ClτRn (Ṽ)
is compact, since it is the closed unit ball in Rn. So f−1[ClτRn (Ṽ)] is a compact
subset of U since f is a homeomorphisn, and since (X, τ) is Hausdorff, this set
is a closed subset as well. But then:

f−1[ClτRn (Ṽ)] = ClτU (V) (4)

= Clτ (V) (5)

and hence V ⊆ X is a precompact coordinate ball that contains x.

Note in the previous theorem we considered the closure with respect to three
different topologies. First, the standard Euclidean topology in Rn. Next, the
subspace topology of the open set U . Lastly, the topology on X. Since X
is Hausdorff, ClτU (V) being compact implies it is closed. Because of this the
closure with respect to the subspace topology τU is the same as the closure
with respect to the ambient topology τ , meaning V is precompact in (X, τ).
The Hausdorff property is essential. Without it the closure with respect to the
subpace U and the entire space X may be very different, and Clτ (X) might fail
to be compact.

Theorem 1.6. If (X, τ) is locally Euclidean and Hausdorff, then there is a
basis B of precompact coordinate balls.
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Proof. Let B be the set of all precompact coordinate balls in (X, τ). By the
previous theorem B is an open cover. It is also a basis. Given U ∈ τ and x ∈ U
we can find a precompact coordinate ball V ∈ B such that x ∈ V. That is,
there is a homeomorphism f : V → Rn. Since x ∈ U ∩ V, and since f is a
homeomorphism, f [U ∩ V] is an open subset of Rn and f(x) ∈ f [U ∩ V]. So
there is an ε > 0 such that the ε ball about f(x) is a subset of f [U ∩V]. Let W̃
be the ε ball centered about f(x). Then W = f−1[W̃] is a coordinate ball that
sits inside of U ∩ V, and since V is precompact, W is precompact as well since
Clτ (W) ⊆ Clτ (V). Hence W is a precompact coordinate ball such that x ∈ W
and W ⊆ U . Therefore B is a basis for τ .

Theorem 1.7. If (X, τ) is a topological manifold, then it is Lindelöf.

Proof. By definition topological manifolds are second countable. But second
countable spaces are Lindelöf, and hence (X, τ) is Lindelöf.

Theorem 1.8. If (X, τ) is a topological manifold, then there exists a countable
basis B of τ consisting of precompact coordinate balls.

Proof. The proof is now a combination of a few previous ideas. We just proved
there is a basis B of precompact coordinate balls. Since topological manifolds are
Lindelöf, there is a countable subcover ∆ ⊆ B. So countably many precompact
coordinate balls cover X, each of which has a countable basis of precompact
coordinate balls. The union of all of these bases for every element of ∆ is a
basis for τ , and since it is the countable union of countable sets, this union is
countable itself. So τ has a countable basis of precompact coordinate balls.

Theorem 1.9. If (X, τ) is locally Euclidean, then it is locally metrizable.

Proof. Every point x ∈ X has an open set U ∈ τ such that x ∈ U and U is
homeomorphic to Rn for some n ∈ N. But Rn is metrizable, the topology being
induced by the Euclidean metric, so U is a metrizable subspace of (X, τ) that
contains x. Hence, (X, τ) is locally metrizable.

Theorem 1.10. If (X, τ) is locally Euclidean, then it is locally compact.

Proof. Let x ∈ X. Since (X, τ) is locally Euclidean, there is a coordinate ball
U ∈ τ such that x ∈ U and U is homeomorphic to Rn. Let f : Rn → U be
a homeomorphism. Then in particular f : Rn → X is an injective continuous
open mapping. Let Ṽ be the open ball of radius 1 centered about f(x) and let
K̃ be the closed ball of radius 1 centered at f(x). Then Ṽ ⊆ K̃. By the Heine-
Borel theorem K̃ is compact. But then, since f is continuous, K = f [K̃] ⊆ X
is compact. Let V = f [Ṽ]. Since Ṽ is open and f is an open mapping, V ⊆ U is
open. But x ∈ V and V ⊆ K. Hence, (X, τ) is locally compact.

Theorem 1.11. If (X, τ) is locally Euclidean and Hausdorff, then it is regular.

Proof. Since (X, τ) is locally Euclidean, it is locally compact. But locally com-
pact Hausdorff spaces are regular, and hence (X, τ) is regular.
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Theorem 1.12. If (X, τ) is a topological manifold, then it is metrizable.

Proof. Since (X, τ) is a topological manifold, it is Hausdorff and second count-
able by definition. But topological manifolds are also locally Euclidean and lo-
cally Euclidean Hausdorff spaces are regular. Hence (X, τ) is regular, Hausdorff,
and second countable, so by Urysohn’s metrization theorem it is metrizable.

Theorem 1.13. If (X, τ) is a topological manifold, then it is paracompact.

Proof. Since (X, τ) is a topological manifold, it is metrizable. But by Stone’s
theorem metrizable spaces are paracompact. Hence, (X, τ) is paracompact.

Theorem 1.14. If (X, τ) is locally Euclidean, Hausdorff, and paracompact,
then it is metrizable.

Proof. Since locally Euclidean space are locally metrizable, (X, τ) is a locally
metrizable Hausdorff space that is paracompact. By Smirnov’s theorem, (X, τ)
is metrizable.

Theorem 1.15. If (X, τ) is a topological manifold, then it is σ compact.

Proof. Since (X, τ) is a topological manifold, there is a countable basis B of
precompact coordinate balls. Let U : N→ B be a surjection. Then, since B is a
basis, we have X =

⋃
n∈N Un. But also, since all elements of B are precompact,

for all n ∈ N it is true that Clτ (Un) is compact. Let Kn = Clτ (Un). Then each
Kn is compact and

⋃
n∈NKn = X. Hence (X, τ) is σ compact.

Theorem 1.16. If (X, τ) is a topological manifold, it is compactly exhaustible.

Proof. Since (X, τ) is a topological manifold, it is σ compact. But topological
manifolds are also Hausdorff and locally compact. But locally compact Haus-
dorff spaces that are σ compact are compactly exhaustible. Hence, (X, τ) is
compactly exhaustible.

We’ve already stated this theorem, but let’s prove it again.

Theorem 1.17. If (X, τ) is a topological manifold, then it is paracompact.

Proof. Since (X, τ) is a topological manifold, it is compactly exhaustible. But
compactly exhaustible Hausdorff spaces are paracompact. Hence, (X, τ) is para-
compact.

The connectedness theorems come from the locally Euclidean property.

Theorem 1.18. If (X, τ) is locally Euclidean, then it is locally connected.

Proof. Since (X, τ) is locally Euclidean it has a basis of coordinate balls. But
coordinate balls are connected, so (X, τ) is locally connected.

Theorem 1.19. If (X, τ) is locally Euclidean, then it is locally path connected.
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Proof. Since (X, τ) is locally Euclidean it has a basis of coordinate balls. But
coordinate balls are path connected, so (X, τ) is locally path connected.

Theorem 1.20. If (X, τ) is locally Euclidean, then it is connected if and only
if it is path connected.

Proof. Path connected always implies connected. If (X, τ) is locally Euclidean
and connected, then since locally Euclidean spaces are locally path connected,
(X, τ) must be path connected.
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