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Definition 1 (Dense Subspace in a Metric Space) A dense subspace in a
metric space (X, d) is a metric subspace (A, dA), A ⊆ X, such that for every
x ∈ X there is a sequence a : N→ A such that an → x. That is, a sequence in
A that converges to x in (X, d). �

The motivating examples are the rational and irrational numbers in the real line.
Every real number can be approximated arbitrarily well by a rational number,
and every real number can also be approximated by an irrational number.

Definition 2 (Completion of a Metric Space) A completion of a metric
space (X, d) is a complete metric space (X̃, d̃) such that there is an isometry
f : X → X̃ where f [X] ⊆ X̃ is a dense subspace. �

We will prove in these notes that every metric space (X, d) has a completion,
and that this completion is essentially unique.

Theorem 1. If (X, d) is a metric space, and if a, b : N → X are Cauchy
sequences, then the sequence r : N→ R defined by rn = d(an, bn) is bounded.

Proof. Let ε = 1. Since a and b are Cauchy, there are N0, N1 ∈ N such that
m,n > N0 implies d(am, an) < ε and m,n > N1 implies d(bm, bn) < ε. Let
N = max(N0, N1) and let M = max

(
d(a0, b0), . . . , d(aN+1, bN+1)

)
+ 2. M is

a bound for r. For given any n ∈ N, if n ≤ N we have:

rn = d(an, bn) ≤ max
(
d(a0, b0), . . . , d(aN+1, bN+1)

)
< M (1)

by definition of M . If n > N we get:

rn = d(an, bn) (2)

≤ d(an, aN+1) + d(aN+1, bN+1) + d(bN+1, bn) (3)

< ε + max
(
d(a0, b0), . . . , d(aN+1, bN+1)

)
+ ε (4)

= 2 + max
(
d(a0, b0), . . . , d(aN+1, bN+1)

)
(5)

= M (6)

So rn is bounded between 0 and M + 2, and so is bounded.

Theorem 2 (The Trapezoid Inequality). If (X, d) is a metric space, if
a, b, c, d ∈ X, then |d(a, c)− d(b, d)| ≤ d(a, b) + d(c, d).
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Figure 1: The Trapezoid Inequality

Proof. There are two cases, d(a, c) ≥ d(b, d) and d(a, c) ≤ d(b, d). Suppose
d(a, c) ≥ d(b, d). The argument is symmetric in the other case. Then:

|d(a, c)− d(b, d)| = d(a, c)− d(b, d) (7)

By the triangle inequality, d(b, c) ≤ d(b, d) + d(c, d), and therefore:

d(b, c)− d(b, d) ≤ d(c, d) (8)

Using this we then have:

|d(a, c)− d(b, d)| = d(a, c)− d(b, d) (9)

≤ d(a, b) + d(b, c)− d(b, d) (10)

≤ d(a, b) + d(c, d) (11)

Completing the proof.

The trapezoid inequality gets its name from Fig. 1.

Theorem 3. If (X, d) is a metric space, if a, b : N→ X are Cauchy sequences,
and if r : N → R is defined by rn = d(an, bn), then r is a convergent sequence
in R.

Proof. Let ε > 0. Since a and b are Cauchy, there is an N0, N1 ∈ N such that
m,n > N0 implies d(am, an) < ε/4 and m,n > N1 implies d(bm, bm) < ε/4.
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Let N = max(N0, N1)+1. Then by the trapezoid inequality, m,n > N implies:

|rm − rn| = |rm − rN + rN − rn| (12)

≤ |rm − rN |+ |rN − rn| (13)

= |d(am, bm)− d(aN , bN )|+ |d(aN , bN )− d(an, bn)| (14)

≤ d(aN , am) + d(bN , bm) + d(aN , an) + d(bN , bn) (15)

<
ε

4
+

ε

4
+

ε

4
+

ε

4
(16)

= ε (17)

so r is a Cauchy sequence. But (R, | · |) is complete, so Cauchy sequences
converge. Hence, r is a convergent sequence.

Theorem 4. If (X, d) is a metric space, if A is the set of all Cauchy se-
quences a : N→ X, and if R is the relation defined on A by aRb if and only if
d(an, bn)→ 0, then R is an equivalence relation on A.

Proof. R is reflexive since d(an, an) = 0, so aRa. R is symmetric since aRb im-
plies d(an, bn)→ 0, but d(an, bn) = d(bn, an), so d(bn, an)→ 0, and hence bRa.
Lastly, it is transitive. If aRb and bRc, then d(an, cn) ≤ d(an, bn) + d(bn, cn),
and both of these latter two expressions tend to zero since aRb and bRc, so
d(an, cn) → 0. That is, aRc. So R is reflexive, symmetric, and transitive, and
is therefore an equivalence relation.

Theorem 5. If (X, d) is a metric space, if A is the set of all Cauchy sequences
a : N → X, if R is equivalence relation aRb if and only if d(an, bn) → 0, if
X̃ = A/R, and if d̃ is defined by the formula:

d̃
(
[a], [b]

)
= lim

n→∞
d(an, bn) (18)

then d̃ is a well-defined function d̃ : X̃ × X̃ → R.

Proof. Let a, b, c, d ∈ A be Cauchy sequences with aRc and bRd. Then d(an, cn)→
0 and d(bn, dn)→ 0. But then:

d̃
(
[c], [d]

)
= lim

n→∞
d(cn, dn) (19)

≤ lim
n→∞

(
d(an, cn) + d(an, dn

)
(20)

≤ lim
n→∞

(
d(an, cn) + d(an, bn) + d(bn, dn)

)
(21)

= lim
n→∞

d(an, cn) + lim
n→∞

d(an, bn) + lim
n→∞

d(bn, dn) (22)

= 0 + lim
n→∞

d(an, bn) + 0 (23)

= lim
n→∞

d(an, bn) (24)

= d̃
(
[a], [b]

)
(25)

so d̃ is well-defined.
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Theorem 6. If (X, d) is a metric space, if A is the set of all Cauchy sequences
a : N→ X, and if R is the equivalence relation aRb if and only if d(an, bn)→ 0,
if X̃ = A/R, and if d̃ is the function:

d̃
(
[a], [b]

)
= lim

n→∞
d(an, bn) (26)

then (X̃, d̃) is a complete metric space.

Proof. d̃ is indeed a metric. Since (X, d) is a metric space, d̃ is non-negative
since d is non-negative. Also:

d̃
(
[a], [b]

)
= 0 (27)

⇔d(an, bn)→ 0 (28)

⇔aRb (29)

⇔[a] = [b] (30)

so d̃ is positive-definite. It is symmetric since:

d̃
(
[a], [b]

)
= lim

n→∞
d(an, bn) (31)

= lim
n→∞

d(bn, an) (32)

= d̃
(
[b], [a]

)
(33)

Lastly, it satisfies the triangle inequality. Given [a], [b], and [c], we have:

d̃
(
[a], [b]

)
= lim

n→∞
d(an, bn) (34)

≤ lim
n→∞

(
d(an, cn) + d(cn, bn

)
(35)

= lim
n→∞

d(an, cn) + lim
n→∞

d(cn, bn) (36)

= d̃
(
[a], [c]

)
+ d̃

(
[c], [b]

)
(37)

It is also complete. Let x : N → X̃ be a Cauchy sequence. That is, x is a
sequence of equivalence classes of Cauchy sequences. For every n ∈ N there is
a Cauchy sequence xn : N → X such that xn = [xn]. Since xn is a Cauchy
sequence, there is an Nn ∈ N such that k, ` > Nn implies d(xn

k , x
n
` ) < 1

n+1 .
Define a : N → X by an = xn

Nn
. We now must show that a is a Cauchy

sequence and that xn → [a]. Let ε > 0. Let M0 be such that NM0
+ 1 > 3/ε.

Since x is Cauchy there is an M1 ∈ N such that k, ` ∈ N and k, ` > M1 implies
d̃(xk, x`) < ε/3. That is:

d̃(xk, x`) = lim
n→∞

d(xk
n, x

`
n) <

ε

3
(38)

Let M = max(M0, M1) + 1. Then m,n > M implies:

d(am, an) = d(xm
Nm

, xn
Nn

) (39)

≤ d(xm
Nm

, xm
M ) + d(xm

M , xn
M ) + d(xn

M , xn
Nn

) (40)

<
ε

3
+

ε

3
+

ε

3
(41)

= ε (42)
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So a is a Cauchy sequence. Now we must show that xn → [a]. We have:

d̃([a], xn) = lim
m→∞

d(am, xn
m) (43)

= lim
m→∞

d(xm
Nm

, xn
m) (44)

and this converges to zero as n tends to infinity. So, xn → [a] and thus (X̃, d̃)
is complete.

Theorem 7. If (X, d) is a metric space, if A is the set of all Cauchy sequences
a : N→ X, and if R is the equivalence relation aRb if and only if d(an, bn)→ 0,
if X̃ = A/R, and if d̃ is the function:

d̃
(
[a], [b]

)
= lim

n→∞
d(an, bn) (45)

then there is an isometry f : X → X̃ into the complete metric space (X̃, d̃) such
that f [X] ⊆ X̃ is a dense subspace.

Proof. Given x ∈ X, define g : X → A via g(x) = a where a : N → X is the
sequence an = x. Since a is a constant sequence, it is a Cauchy sequence. Let
f : X → X̃ be defined by f(x) = [g(x)]. f is an isometry. For if x, y ∈ X, then:

d̃
(
f(x), f(y)

)
= d̃

(
[g(x)], [g(y)]

)
(46)

= lim
n→∞

d
(
g(x)n, g(y)n

)
(47)

= lim
n→∞

d(x, y) (48)

= d(x, y) (49)

and hence, f is an isometry. Moreover, f [X] is a dense subset of X̃. Let [a] ∈ X̃
where a ∈ A is a Cauchy sequence. Define the sequence x : N → f [X] via
xn = f(an). Then:

lim
n→∞

d̃([a], xn) = lim
n→∞

lim
m→∞

d(am, an) (50)

= 0 (51)

so x is a sequence in f [X] that converges to [a] in (X̃, d̃), and hence f [X] is
dense.

This is essentially the unique metric space that completes (X, d). If (Y, dY ) is
another complete metric space such that there exists an isometry f : X → Y
such that f [X] ⊆ Y is a dense subspace, then there is a global isometry between
(Y, dY ) and (X̃, d̃).
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