Completing a Metric Space

Ryan Maguire

Summer 2022

Definition 1 (Dense Subspace in a Metric Space) A dense subspace in a metric space (X, d) is a metric subspace $\left(A, d_{A}\right), A \subseteq X$, such that for every $x \in X$ there is a sequence $a: \mathbb{N} \rightarrow A$ such that $a_{n} \rightarrow x$. That is, a sequence in A that converges to x in (X, d).

The motivating examples are the rational and irrational numbers in the real line. Every real number can be approximated arbitrarily well by a rational number, and every real number can also be approximated by an irrational number.

Definition 2 (Completion of a Metric Space) A completion of a metric space (X, d) is a complete metric space (\tilde{X}, \tilde{d}) such that there is an isometry $f: X \rightarrow \tilde{X}$ where $f[X] \subseteq \tilde{X}$ is a dense subspace.

We will prove in these notes that every metric space (X, d) has a completion, and that this completion is essentially unique.

Theorem 1. If (X, d) is a metric space, and if $a, b: \mathbb{N} \rightarrow X$ are Cauchy sequences, then the sequence $r: \mathbb{N} \rightarrow \mathbb{R}$ defined by $r_{n}=d\left(a_{n}, b_{n}\right)$ is bounded.

Proof. Let $\varepsilon=1$. Since a and b are Cauchy, there are $N_{0}, N_{1} \in \mathbb{N}$ such that $m, n>N_{0}$ implies $d\left(a_{m}, a_{n}\right)<\varepsilon$ and $m, n>N_{1}$ implies $d\left(b_{m}, b_{n}\right)<\varepsilon$. Let $N=\max \left(N_{0}, N_{1}\right)$ and let $M=\max \left(d\left(a_{0}, b_{0}\right), \ldots, d\left(a_{N+1}, b_{N+1}\right)\right)+2 . M$ is a bound for r. For given any $n \in \mathbb{N}$, if $n \leq N$ we have:

$$
\begin{equation*}
r_{n}=d\left(a_{n}, b_{n}\right) \leq \max \left(d\left(a_{0}, b_{0}\right), \ldots, d\left(a_{N+1}, b_{N+1}\right)\right)<M \tag{1}
\end{equation*}
$$

by definition of M. If $n>N$ we get:

$$
\begin{align*}
r_{n} & =d\left(a_{n}, b_{n}\right) \tag{2}\\
& \leq d\left(a_{n}, a_{N+1}\right)+d\left(a_{N+1}, b_{N+1}\right)+d\left(b_{N+1}, b_{n}\right) \tag{3}\\
& <\varepsilon+\max \left(d\left(a_{0}, b_{0}\right), \ldots, d\left(a_{N+1}, b_{N+1}\right)\right)+\varepsilon \tag{4}\\
& =2+\max \left(d\left(a_{0}, b_{0}\right), \ldots, d\left(a_{N+1}, b_{N+1}\right)\right) \tag{5}\\
& =M \tag{6}
\end{align*}
$$

So r_{n} is bounded between 0 and $M+2$, and so is bounded.
Theorem 2 (The Trapezoid Inequality). If (X, d) is a metric space, if $a, b, c, d \in X$, then $|d(a, c)-d(b, d)| \leq d(a, b)+d(c, d)$.

Figure 1: The Trapezoid Inequality

Proof. There are two cases, $d(a, c) \geq d(b, d)$ and $d(a, c) \leq d(b, d)$. Suppose $d(a, c) \geq d(b, d)$. The argument is symmetric in the other case. Then:

$$
\begin{equation*}
|d(a, c)-d(b, d)|=d(a, c)-d(b, d) \tag{7}
\end{equation*}
$$

By the triangle inequality, $d(b, c) \leq d(b, d)+d(c, d)$, and therefore:

$$
\begin{equation*}
d(b, c)-d(b, d) \leq d(c, d) \tag{8}
\end{equation*}
$$

Using this we then have:

$$
\begin{align*}
|d(a, c)-d(b, d)| & =d(a, c)-d(b, d) \tag{9}\\
& \leq d(a, b)+d(b, c)-d(b, d) \tag{10}\\
& \leq d(a, b)+d(c, d) \tag{11}
\end{align*}
$$

Completing the proof.
The trapezoid inequality gets its name from Fig. 1.
Theorem 3. If (X, d) is a metric space, if $a, b: \mathbb{N} \rightarrow X$ are Cauchy sequences, and if $r: \mathbb{N} \rightarrow \mathbb{R}$ is defined by $r_{n}=d\left(a_{n}, b_{n}\right)$, then r is a convergent sequence in \mathbb{R}.

Proof. Let $\varepsilon>0$. Since a and b are Cauchy, there is an $N_{0}, N_{1} \in \mathbb{N}$ such that $m, n>N_{0}$ implies $d\left(a_{m}, a_{n}\right)<\varepsilon / 4$ and $m, n>N_{1}$ implies $d\left(b_{m}, b_{m}\right)<\varepsilon / 4$.

Let $N=\max \left(N_{0}, N_{1}\right)+1$. Then by the trapezoid inequality, $m, n>N$ implies:

$$
\begin{align*}
\left|r_{m}-r_{n}\right| & =\left|r_{m}-r_{N}+r_{N}-r_{n}\right| \tag{12}\\
& \leq\left|r_{m}-r_{N}\right|+\left|r_{N}-r_{n}\right| \tag{13}\\
& =\left|d\left(a_{m}, b_{m}\right)-d\left(a_{N}, b_{N}\right)\right|+\left|d\left(a_{N}, b_{N}\right)-d\left(a_{n}, b_{n}\right)\right| \tag{14}\\
& \leq d\left(a_{N}, a_{m}\right)+d\left(b_{N}, b_{m}\right)+d\left(a_{N}, a_{n}\right)+d\left(b_{N}, b_{n}\right) \tag{15}\\
& <\frac{\varepsilon}{4}+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}+\frac{\varepsilon}{4} \tag{16}\\
& =\varepsilon \tag{17}
\end{align*}
$$

so r is a Cauchy sequence. But $(\mathbb{R},|\cdot|)$ is complete, so Cauchy sequences converge. Hence, r is a convergent sequence.

Theorem 4. If (X, d) is a metric space, if \mathcal{A} is the set of all Cauchy sequences $a: \mathbb{N} \rightarrow X$, and if R is the relation defined on \mathcal{A} by $a R b$ if and only if $d\left(a_{n}, b_{n}\right) \rightarrow 0$, then R is an equivalence relation on \mathcal{A}.

Proof. R is reflexive since $d\left(a_{n}, a_{n}\right)=0$, so $a R a$. R is symmetric since $a R b$ implies $d\left(a_{n}, b_{n}\right) \rightarrow 0$, but $d\left(a_{n}, b_{n}\right)=d\left(b_{n}, a_{n}\right)$, so $d\left(b_{n}, a_{n}\right) \rightarrow 0$, and hence $b R a$. Lastly, it is transitive. If $a R b$ and $b R c$, then $d\left(a_{n}, c_{n}\right) \leq d\left(a_{n}, b_{n}\right)+d\left(b_{n}, c_{n}\right)$, and both of these latter two expressions tend to zero since $a R b$ and $b R c$, so $d\left(a_{n}, c_{n}\right) \rightarrow 0$. That is, $a R c$. So R is reflexive, symmetric, and transitive, and is therefore an equivalence relation.

Theorem 5. If (X, d) is a metric space, if \mathcal{A} is the set of all Cauchy sequences $a_{\tilde{X}}: \mathbb{N} \rightarrow X$, if R is equivalence relation $a R b$ if and only if $d\left(a_{n}, b_{n}\right) \rightarrow 0$, if $\tilde{X}=\mathcal{A} / R$, and if \tilde{d} is defined by the formula:

$$
\begin{equation*}
\tilde{d}([a],[b])=\lim _{n \rightarrow \infty} d\left(a_{n}, b_{n}\right) \tag{18}
\end{equation*}
$$

then \tilde{d} is a well-defined function $\tilde{d}: \tilde{X} \times \tilde{X} \rightarrow \mathbb{R}$.
Proof. Let $a, b, c, d \in \mathcal{A}$ be Cauchy sequences with $a R c$ and $b R d$. Then $d\left(a_{n}, c_{n}\right) \rightarrow$ 0 and $d\left(b_{n}, d_{n}\right) \rightarrow 0$. But then:

$$
\begin{align*}
\tilde{d}([c],[d]) & =\lim _{n \rightarrow \infty} d\left(c_{n}, d_{n}\right) \tag{19}\\
& \leq \lim _{n \rightarrow \infty}\left(d\left(a_{n}, c_{n}\right)+d\left(a_{n}, d_{n}\right)\right. \tag{20}\\
& \leq \lim _{n \rightarrow \infty}\left(d\left(a_{n}, c_{n}\right)+d\left(a_{n}, b_{n}\right)+d\left(b_{n}, d_{n}\right)\right) \tag{21}\\
& =\lim _{n \rightarrow \infty} d\left(a_{n}, c_{n}\right)+\lim _{n \rightarrow \infty} d\left(a_{n}, b_{n}\right)+\lim _{n \rightarrow \infty} d\left(b_{n}, d_{n}\right) \tag{22}\\
& =0+\lim _{n \rightarrow \infty} d\left(a_{n}, b_{n}\right)+0 \tag{23}\\
& =\lim _{n \rightarrow \infty} d\left(a_{n}, b_{n}\right) \tag{24}\\
& =\tilde{d}([a],[b]) \tag{25}
\end{align*}
$$

so \tilde{d} is well-defined.

Theorem 6. If (X, d) is a metric space, if \mathcal{A} is the set of all Cauchy sequences $a: \mathbb{N} \rightarrow X$, and if R is the equivalence relation aRb if and only if $d\left(a_{n}, b_{n}\right) \rightarrow 0$, if $\tilde{X}=\mathcal{A} / R$, and if \tilde{d} is the function:

$$
\begin{equation*}
\tilde{d}([a],[b])=\lim _{n \rightarrow \infty} d\left(a_{n}, b_{n}\right) \tag{26}
\end{equation*}
$$

then (\tilde{X}, \tilde{d}) is a complete metric space.
Proof. \tilde{d} is indeed a metric. Since (X, d) is a metric space, \tilde{d} is non-negative since d is non-negative. Also:

$$
\begin{align*}
& \tilde{d}([a],[b])=0 \tag{27}\\
\Leftrightarrow & d\left(a_{n}, b_{n}\right) \rightarrow 0 \tag{28}\\
\Leftrightarrow & a R b \tag{29}\\
\Leftrightarrow & {[a]=[b] } \tag{30}
\end{align*}
$$

so \tilde{d} is positive-definite. It is symmetric since:

$$
\begin{align*}
\tilde{d}([a],[b]) & =\lim _{n \rightarrow \infty} d\left(a_{n}, b_{n}\right) \tag{31}\\
& =\lim _{n \rightarrow \infty} d\left(b_{n}, a_{n}\right) \tag{32}\\
& =\tilde{d}([b],[a]) \tag{33}
\end{align*}
$$

Lastly, it satisfies the triangle inequality. Given $[a],[b]$, and $[c]$, we have:

$$
\begin{align*}
\tilde{d}([a],[b]) & =\lim _{n \rightarrow \infty} d\left(a_{n}, b_{n}\right) \tag{34}\\
& \leq \lim _{n \rightarrow \infty}\left(d\left(a_{n}, c_{n}\right)+d\left(c_{n}, b_{n}\right)\right. \tag{35}\\
& =\lim _{n \rightarrow \infty} d\left(a_{n}, c_{n}\right)+\lim _{n \rightarrow \infty} d\left(c_{n}, b_{n}\right) \tag{36}\\
& =\tilde{d}([a],[c])+\tilde{d}([c],[b]) \tag{37}
\end{align*}
$$

It is also complete. Let $\mathbf{x}: \mathbb{N} \rightarrow \tilde{X}$ be a Cauchy sequence. That is, \mathbf{x} is a sequence of equivalence classes of Cauchy sequences. For every $n \in \mathbb{N}$ there is a Cauchy sequence $x^{n}: \mathbb{N} \rightarrow X$ such that $\mathbf{x}_{n}=\left[x^{n}\right]$. Since x^{n} is a Cauchy sequence, there is an $N_{n} \in \mathbb{N}$ such that $k, \ell>N_{n}$ implies $d\left(x_{k}^{n}, x_{\ell}^{n}\right)<\frac{1}{n+1}$. Define $a: \mathbb{N} \rightarrow X$ by $a_{n}=x_{N_{n}}^{n}$. We now must show that a is a Cauchy sequence and that $\mathbf{x}_{n} \rightarrow[a]$. Let $\varepsilon>0$. Let M_{0} be such that $N_{M_{0}}+1>3 / \varepsilon$. Since \mathbf{x} is Cauchy there is an $M_{1} \in \mathbb{N}$ such that $k, \ell \in \mathbb{N}$ and $k, \ell>M_{1}$ implies $\tilde{d}\left(\mathbf{x}_{k}, \mathbf{x}_{\ell}\right)<\varepsilon / 3$. That is:

$$
\begin{equation*}
\tilde{d}\left(\mathbf{x}_{k}, \mathbf{x}_{\ell}\right)=\lim _{n \rightarrow \infty} d\left(x_{n}^{k}, x_{n}^{\ell}\right)<\frac{\varepsilon}{3} \tag{38}
\end{equation*}
$$

Let $M=\max \left(M_{0}, M_{1}\right)+1$. Then $m, n>M$ implies:

$$
\begin{align*}
d\left(a_{m}, a_{n}\right) & =d\left(x_{N_{m}}^{m}, x_{N_{n}}^{n}\right) \tag{39}\\
& \leq d\left(x_{N_{m}}^{m}, x_{M}^{m}\right)+d\left(x_{M}^{m}, x_{M}^{n}\right)+d\left(x_{M}^{n}, x_{N_{n}}^{n}\right) \tag{40}\\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3} \tag{41}\\
& =\varepsilon \tag{42}
\end{align*}
$$

So a is a Cauchy sequence. Now we must show that $\mathbf{x}_{n} \rightarrow[a]$. We have:

$$
\begin{align*}
\tilde{d}\left([a], \mathbf{x}_{n}\right) & =\lim _{m \rightarrow \infty} d\left(a_{m}, x_{m}^{n}\right) \tag{43}\\
& =\lim _{m \rightarrow \infty} d\left(x_{N_{m}}^{m}, x_{m}^{n}\right) \tag{44}
\end{align*}
$$

and this converges to zero as n tends to infinity. So, $\mathbf{x}_{n} \rightarrow[a]$ and thus (\tilde{X}, \tilde{d}) is complete.

Theorem 7. If (X, d) is a metric space, if \mathcal{A} is the set of all Cauchy sequences $a: \mathbb{N} \rightarrow X$, and if R is the equivalence relation aRb if and only if $d\left(a_{n}, b_{n}\right) \rightarrow 0$, if $\tilde{X}=\mathcal{A} / R$, and if \tilde{d} is the function:

$$
\begin{equation*}
\tilde{d}([a],[b])=\lim _{n \rightarrow \infty} d\left(a_{n}, b_{n}\right) \tag{45}
\end{equation*}
$$

then there is an isometry $f: X \rightarrow \tilde{X}$ into the complete metric space (\tilde{X}, \tilde{d}) such that $f[X] \subseteq \tilde{X}$ is a dense subspace.

Proof. Given $x \in X$, define $g: X \rightarrow \mathcal{A}$ via $g(x)=a$ where $a: \mathbb{N} \rightarrow X$ is the sequence $a_{n}=x$. Since a is a constant sequence, it is a Cauchy sequence. Let $f: X \rightarrow \tilde{X}$ be defined by $f(x)=[g(x)] . f$ is an isometry. For if $x, y \in X$, then:

$$
\begin{align*}
\tilde{d}(f(x), f(y)) & =\tilde{d}([g(x)],[g(y)]) \tag{46}\\
& =\lim _{n \rightarrow \infty} d\left(g(x)_{n}, g(y)_{n}\right) \tag{47}\\
& =\lim _{n \rightarrow \infty} d(x, y) \tag{48}\\
& =d(x, y) \tag{49}
\end{align*}
$$

and hence, f is an isometry. Moreover, $f[X]$ is a dense subset of \tilde{X}. Let $[a] \in \tilde{X}$ where $a \in \mathcal{A}$ is a Cauchy sequence. Define the sequence $\mathbf{x}: \mathbb{N} \rightarrow f[X]$ via $\mathbf{x}_{n}=f\left(a_{n}\right)$. Then:

$$
\begin{align*}
\lim _{n \rightarrow \infty} \tilde{d}\left([a], \mathbf{x}_{n}\right) & =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} d\left(a_{m}, a_{n}\right) \tag{50}\\
& =0 \tag{51}
\end{align*}
$$

so \mathbf{x} is a sequence in $f[X]$ that converges to $[a]$ in (\tilde{X}, \tilde{d}), and hence $f[X]$ is dense.

This is essentially the unique metric space that completes (X, d). If $\left(Y, d_{Y}\right)$ is another complete metric space such that there exists an isometry $f: X \rightarrow Y$ such that $f[X] \subseteq Y$ is a dense subspace, then there is a global isometry between $\left(Y, d_{Y}\right)$ and (\tilde{X}, \tilde{d}).

