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Definition 1 (Dense Subspace in a Metric Space) A dense subspace in a
metric space (X, d) is a metric subspace (A, d4), A C X, such that for every
x € X there is a sequence a : N — A such that a,, — z. That is, a sequence in
A that converges to x in (X, d). |

The motivating examples are the rational and irrational numbers in the real line.
Every real number can be approximated arbitrarily well by a rational number,
and every real number can also be approximated by an irrational number.

Definition 2 (Completion of a Metric Space) A completion of a metric
space (X, d) is a complete metric space (X, d) such that there is an isometry
f: X — X where f[X] C X is a dense subspace. |

We will prove in these notes that every metric space (X, d) has a completion,
and that this completion is essentially unique.

Theorem 1. If (X, d) is a metric space, and if a,b : N — X are Cauchy
sequences, then the sequence r : N — R defined by r,, = d(ay, by,) is bounded.

Proof. Let ¢ = 1. Since a and b are Cauchy, there are Ny, N; € N such that
m,n > Ny implies d(ap,, a,) < ¢ and m,n > N; implies d(b,,, b,) < . Let
N = max(Ng, N1) and let M = max(d(ao, bo)y - .., dlant1, bN+1)) +2. M is
a bound for r. For given any n € N, if n < N we have:

Tn = d(an, by) < max(d(ao, bo), ..., dlan+1, bN+1)) <M (1)
by definition of M. If n > N we get:

rn = d(ap, by) (2)

<d(an, an+1) +dlant1, bny1) +d(bns1, bp) (3)

< 5+max(d(a0, bo)y - .., dlanii, bN+1)) +€ (4)

= 2+ max(d(ao, bo), - .., d(ant1, by4+1)) (5)

=M (6)

So 7, is bounded between 0 and M + 2, and so is bounded. O

Theorem 2 (The Trapezoid Inequality). If (X, d) is a metric space, if
a,b,c,d € X, then |d(a, ¢) — d(b, d)| < d(a, b) + d(c, d).
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Figure 1: The Trapezoid Inequality
Proof. There are two cases, d(a, ¢) > d(b, d) and d(a, ¢) < d(b, d). Suppose
d(a, ¢) > d(b, d). The argument is symmetric in the other case. Then:

|d(a, ¢) —d(b, d)| = d(a, ¢) — d(b, d) (7)

By the triangle inequality, d(b, ¢) < d(b, d) + d(c, d), and therefore:

d(ba C) - d(b7 d) < d(C, d) (8)
Using this we then have:
|d(a, ¢) — d(b, d)| = d(a, ¢) — d(b, d) (9)
<d(a, b) +d(b, ¢) — d(b, d) (10)
<d(a, b) +d(c, d) (11)
Completing the proof. O

The trapezoid inequality gets its name from Fig. 1.

Theorem 3. If (X, d) is a metric space, if a,b: N — X are Cauchy sequences,
and if 1 : N = R is defined by r,, = d(an, by), then r is a convergent sequence
mn R.

Proof. Let € > 0. Since a and b are Cauchy, there is an Ny, N1 € N such that
m,n > No implies d(am, a,) < €/4 and m,n > Ny implies d(by,, by) < /4.



Let N = max(Ny, N1)+1. Then by the trapezoid inequality, m,n > N implies:

P = Tnl = |rm — T 7N = Tl (12)
S |TnL - TN| + |TN - 7ﬁn| (13)
= |d(am, bm) — d(an, bn)| + |d(an, by) — d(an, by)] (14)
<d(an, am) + d(bn, by) + d(an, an) + d(bn, by) (15)
e € € ¢

AT 1
< 1 + 1 + 1 + 1 (16)
so r is a Cauchy sequence. But (R, |- |) is complete, so Cauchy sequences
converge. Hence, r is a convergent sequence. U

Theorem 4. If (X, d) is a metric space, if A is the set of all Cauchy se-
quences a : N — X, and if R is the relation defined on A by aRb if and only if
d(an, b,) — 0, then R is an equivalence relation on A.

Proof. R is reflexive since d(a,,, a,) = 0, so aRa. R is symmetric since aRb im-
plies d(ay, by) — 0, but d(an, b,) = d(bn, ay), so d(by, a,) — 0, and hence bRa.
Lastly, it is transitive. If aRb and bRe, then d(an, ¢,) < d(an, bn) + d(bn, cn),
and both of these latter two expressions tend to zero since aRb and bRc, so
d(an, ¢,) — 0. That is, aRe. So R is reflexive, symmetric, and transitive, and
is therefore an equivalence relation. O

Theorem 5. If (X, d) is a metric space, if A is the set of all Cauchy sequences
a: N = X, if R is equivalence relation aRb if and only if d(ay,, b,) — 0, if
X = A/R, and if d is defined by the formula:

d({a), b]) = Jim d(an, ba) (18)

then d is a well-defined function d: X x X 5 R.

Proof. Let a,b, c,d € Abe Cauchy sequences with aRec and bRd. Then d(ay,, ¢,) —
0 and d(by,, d,,) — 0. But then:

CZ([C], [d]) = ILm d(Cn, dn) (19)

< nlLH;O (d(an, cn) + d(an, dn) (20)

< lim (d(an, cn) + d(an, by) + d(by, dn)) (21)

n— 00

= nh_)rI;o d(ap, cn) + nh_}n;O d(an, by) + nlgr()lo d(by, dy) (22)

=0+ le d(an, by) +0 (23)

= nh_)rr;o d(an, by) (24)

= d([a], [b]) (25)

so d is well-defined. O



Theorem 6. If (X, d) is a metric space, if A is the set of all Cauchy sequences
a:N— X, and if R is the equivalence relation aRb if and only if d(ay,, b,) — 0,
if X = A/R, and if d is the function:

d([a], b)) = lim d(an, by) (26)

then (X, (2) 18 a complete metric space.

Proof. d is indeed a metric. Since (X, d) is a metric space, d is non-negative
since d is non-negative. Also:

d([a], [b]) =0 (27)
&d(an, by) — 0 (28)
SaRb (29)
<la] = [0] (30)

so d is positive-definite. It is symmetric since:

d(lal, b)) = lim_d(a, b) (31)
= nh_}rrolo d(by, an) (32)

= d([], [a)) (33)
Lastly, it satisfies the triangle inequality. Given [a], [b], and [c], we have:
d([a], [b]) = lim d(an, bn)

(
lim (d(an, cn) +d(cn, bn) (
(
(

IN

= A8, dan, cn) + iy, d{ca, b)

— d([a), [d]) +d([d], [b)

It is also complete. Let x : N — X be a Cauchy sequence. That is, x is a
sequence of equivalence classes of Cauchy sequences. For every n € N there is
a Cauchy sequence z" : N — X such that x,, = [z"]. Since z" is a Cauchy
sequence, there is an N, € N such that k,¢ > N, implies d(z}, z}) < ﬁ
Define @ : N — X by a, = 2%, . We now must show that a is a Cauchy
sequence and that x,, — [a]. Let ¢ > 0. Let My be such that Ny, +1 > 3/e.
Since x is Cauchy there is an M; € N such that k,¢ € N and k,¢ > M; implies
d(xg, x¢) < /3. That is:

d(xk, X¢) = nl;rréo d(zF, z) < %

Let M = max(My, M7) + 1. Then m,n > M implies:

d(am, an) = d(z} , 2} ) (39)
<d(zy, , zhr) +d(@hp, 2hy) + d(@hy, 2R,) (40)

e € ¢
cyfyt 41
<3t3ty (41)
=c (42)



So a is a Cauchy sequence. Now we must show that x,, — [a]. We have:

d([a], x,) = lim d(am, x,,) (43)
m— 00
= lim d(a% , zl) (44)
m— o0 m

and this converges to zero as n tends to infinity. So, x,, — [a] and thus (X, d)
is complete. O

Theorem 7. If (X, d) is a metric space, if A is the set of all Cauchy sequences
a:N— X, and if R is the equivalence relation aRb if and only if d(ay, b,) — 0,
if X = A/R, and if d is the function:

d([a), [b]) = lim d(an, by) (45)

n—oo

then there is an isometry f : X — X into the complete metric space (X, ) such
that f[X] C X is a dense subspace.

Proof. Given z € X, define g : X — A via g(z) = a where a : N — X is the
sequence a, = z. Since a is a constant sequence, it is a Cauchy sequence. Let
f:X — X be defined by f(z) = [g(x)]. f is an isometry. For if z,y € X, then:

d(f(x), f(y)) = d(lg(=)] [9(»)]) (46)
= lim d(g(x)n, 9(y)n) (47)

= lim d(z, y) (48)

(49)

=d(z, y) 49
and hence, f is an isometry. Moreover, f[X] is a dense subset of X. Let [a] € X

where a € A is a Cauchy sequence. Define the sequence x : N — f[X] via
x, = f(an). Then:

nll)n;o d([a], xp,) = nlgr;o ngnoo d(am, an) (50)
—0 (51)

so X is a sequence in f[X] that converges to [a] in (X, d), and hence f[X] is
dense. 0

This is essentially the unique metric space that completes (X, d). If (Y, dy) is
another complete metric space such that there exists an isometry f : X — Y
such that f[X] C Y is a dense subspace, then there is a global isometry between
(Y, dy) and (X, d).



