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Peano arithmetic is a weaker system of axioms that is sufficient to prove a lot
of the elementary properties of the natural numbers. The system of set theory
we have been working with, Zermelo-Fraenkel set theory with the the axiom of
choice (ZFC) contains Peano arithmetic as a subset (via the axiom of infinity,
and a few others). This system postulates the following:

1. There is a set N with 0 ∈ N.

2. There is a function σ : N→ N.

3. If m,n ∈ N and σ(m) = σ(n), then m = n.

4. σ(n) = 0 is always false.

5. If A ⊆ N is such that 0 ∈ A and n ∈ A implies σ(n) ∈ A, then A = N.

This is constructable in ZFC, the function σ is the plus one function, σ(n) =
n + 1. This last property is crucial. It says if A ⊆ N is such that 0 ∈ A and
n ∈ A implies n+1 ∈ A, then A = N. The intuition goes like this. 0 ∈ A is true.
But 0 ∈ A implies 0 + 1 ∈ A, so 1 ∈ A. But 1 ∈ A implies 1 + 1 ∈ A, so 2 ∈ A.
But 2 ∈ A implies 2 + 1 ∈ A, so 3 ∈ A. And so on. This fact is also provable
in ZFC (it is an axiom in Peano arithmetic). Containment ∈ defines an order
on the integers. Remember, in ZFC, that 0 = ∅, 1 = { 0 }, 2 = { 0, 1 }, and so
on. We write m < n if and only if m ∈ n. This defines a well-order. Every non-
empty subset of N has a smallest element. This well-ordering property gives us
property 5 in Peano arithmetic.

Let P be a predicate on the natural numbers. That is, for every n ∈ N, P (n)
is a sentence which we may say is true or false. Suppose P (0) is true, and the
truth of P (n) implies the truth of P (n + 1). Then P (n) is true for all n ∈ N.
Why? Well, P (1) is true since P (0) is true, and P (0) being true implies P (0+1)
is true. Then P (2) is true since P (1) is true and P (1) being true implies P (2)
is true, and so on. We can prove this rigorously.

Theorem 1 (Principle of Mathematical Induction). If P is a predicate
on the natural numbers such that P (0) is true and for all n ∈ N the truth of
P (n) implies the truth of P (n+ 1), then P (n) is true for all n ∈ N.
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Proof. Suppose not. Then there is some m ∈ N such that P (m) is false. Define
A via:

A = { k ∈ N | P (k) is false. } (1)

Since m ∈ N, A is non-empty. So there is a least element N ∈ A. But N 6= 0
since P (0) is true by hypothesis. Since N 6= 0 and N ∈ N, we can write
N = n + 1 for some n ∈ N. But then n < N , and since N is the least element
of A, P (n) must be true. But the truth of P (n) implies the truth of P (n+ 1),
so P (n + 1) is true. But n + 1 = N , so P (N) is true, a contradiction. Hence,
P (n) is true for all n ∈ N.

Let’s use this.

Example 1 Consider the partial sums SN for N ∈ N defined by:

SN =

N∑
n=0

n (2)

We can provide a closed-form formula for this via the principle of induction. We
want to prove that:

SN =
N(N + 1)

2
(3)

That is, P (N) is the predicate on the natural numbers that SN = N(N + 1)/2.
We prove P (N) is true for all N ∈ N via induction. The case N = 0 says
0 = 0(0 + 1)/2, which is true. Suppose the statement is true for some N ∈ N.
We must prove this implies the statement is true for N + 1. We compute:

SN+1 =

N+1∑
n=0

n (4)

= N + 1 +

N∑
n=0

n (5)

= N + 1 + SN (6)

But P (N) is true, by hypothesis, so SN = N(N + 1)/2. We get:

SN+1 = N + 1 + SN (7)

= N + 1 +
N(N + 1)

2
(8)

=
2N + 2 +N2 +N

2
(9)

=
N2 + 3N + 2

2
(10)

=
(N + 1)(N + 2)

2
(11)

and therefore P (N + 1) is true. Since the formula is true for N = 0 and P (N)
implies P (N + 1), we see that by the principle of induction P (N) is true for all
N ∈ N. �
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