Mathematical Induction

Ryan Maguire

Summer 2022

Peano arithmetic is a weaker system of axioms that is sufficient to prove a lot of the elementary properties of the natural numbers. The system of set theory we have been working with, Zermelo-Fraenkel set theory with the the axiom of choice (ZFC) contains Peano arithmetic as a *subset* (via the axiom of infinity, and a few others). This system postulates the following:

- 1. There is a set \mathbb{N} with $0 \in \mathbb{N}$.
- 2. There is a function $\sigma : \mathbb{N} \to \mathbb{N}$.
- 3. If $m, n \in \mathbb{N}$ and $\sigma(m) = \sigma(n)$, then m = n.
- 4. $\sigma(n) = 0$ is always false.
- 5. If $A \subseteq \mathbb{N}$ is such that $0 \in A$ and $n \in A$ implies $\sigma(n) \in A$, then $A = \mathbb{N}$.

This is constructable in ZFC, the function σ is the *plus one* function, $\sigma(n) = n + 1$. This last property is crucial. It says if $A \subseteq \mathbb{N}$ is such that $0 \in A$ and $n \in A$ implies $n+1 \in A$, then $A = \mathbb{N}$. The intuition goes like this. $0 \in A$ is true. But $0 \in A$ implies $0 + 1 \in A$, so $1 \in A$. But $1 \in A$ implies $1 + 1 \in A$, so $2 \in A$. But $2 \in A$ implies $2 + 1 \in A$, so $3 \in A$. And so on. This fact is also provable in ZFC (it is an *axiom* in Peano arithmetic). Containment \in defines an order on the integers. Remember, in ZFC, that $0 = \emptyset$, $1 = \{0\}$, $2 = \{0, 1\}$, and so on. We write m < n if and only if $m \in n$. This defines a *well-order*. Every nonempty subset of \mathbb{N} has a *smallest* element. This well-ordering property gives us property 5 in Peano arithmetic.

Let P be a predicate on the natural numbers. That is, for every $n \in \mathbb{N}$, P(n) is a sentence which we may say is true or false. Suppose P(0) is true, and the truth of P(n) implies the truth of P(n+1). Then P(n) is true for all $n \in \mathbb{N}$. Why? Well, P(1) is true since P(0) is true, and P(0) being true implies P(0+1) is true. Then P(2) is true since P(1) is true and P(1) being true implies P(2) is true, and so on. We can prove this rigorously.

Theorem 1 (Principle of Mathematical Induction). If P is a predicate on the natural numbers such that P(0) is true and for all $n \in \mathbb{N}$ the truth of P(n) implies the truth of P(n+1), then P(n) is true for all $n \in \mathbb{N}$. *Proof.* Suppose not. Then there is some $m \in \mathbb{N}$ such that P(m) is false. Define A via:

$$A = \{ k \in \mathbb{N} \mid P(k) \text{ is false.} \}$$
(1)

Since $m \in \mathbb{N}$, A is non-empty. So there is a least element $N \in A$. But $N \neq 0$ since P(0) is true by hypothesis. Since $N \neq 0$ and $N \in \mathbb{N}$, we can write N = n + 1 for some $n \in \mathbb{N}$. But then n < N, and since N is the least element of A, P(n) must be true. But the truth of P(n) implies the truth of P(n+1), so P(n+1) is true. But n+1 = N, so P(N) is true, a contradiction. Hence, P(n) is true for all $n \in \mathbb{N}$.

Let's use this.

Example 1 Consider the partial sums S_N for $N \in \mathbb{N}$ defined by:

$$S_N = \sum_{n=0}^N n \tag{2}$$

We can provide a closed-form formula for this via the principle of induction. We want to prove that:

$$S_N = \frac{N(N+1)}{2} \tag{3}$$

That is, P(N) is the predicate on the natural numbers that $S_N = N(N+1)/2$. We prove P(N) is true for all $N \in \mathbb{N}$ via induction. The case N = 0 says 0 = 0(0+1)/2, which is true. Suppose the statement is true for some $N \in \mathbb{N}$. We must prove this implies the statement is true for N+1. We compute:

$$S_{N+1} = \sum_{n=0}^{N+1} n$$
 (4)

$$= N + 1 + \sum_{n=0}^{N} n \tag{5}$$

$$= N + 1 + S_N \tag{6}$$

But P(N) is true, by hypothesis, so $S_N = N(N+1)/2$. We get:

$$S_{N+1} = N + 1 + S_N (7)$$

$$= N + 1 + \frac{N(N+1)}{2} \tag{8}$$

$$=\frac{2N+2+N^2+N}{2}$$
(9)

$$=\frac{N^2+3N+2}{2}$$
 (10)

$$=\frac{(N+1)(N+2)}{2}$$
(11)

and therefore P(N + 1) is true. Since the formula is true for N = 0 and P(N) implies P(N + 1), we see that by the principle of induction P(N) is true for all $N \in \mathbb{N}$.