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Throughout our discussion of metric spaces we’ve repeatedly used the axiom of
choice, but neglected mentioning it. Let’s review Lebesgue’s number lemma. We
wish to show that for any open cover O of a compact metric space (X, d) there

is a δ > 0 such that for all x ∈ X there is a U ∈ O such that B
(X, d)
δ (x) ⊆ U .

We say suppose not. We are negating our claim. Using quantifier notation, our
claim says:

∀O⊆τd,⋃O=X∃δ>0∀x∈X∃U∈O
(
B

(X, d)
δ (x) ⊆ U

)
(1)

the negation of this swaps ∀ with ∃ and vice-versa.

∃O⊆τd,⋃O=X∀δ>0∃x∈X∀U∈O
(
B

(X, d)
δ (x) * U

)
(2)

That is, there exists an open cover O of X such that for all δ > 0 there is an
x ∈ X with the property that for every U ∈ O the δ ball centered at x is not
entirely contained in U . In particular, since the negation says this is true for all
δ > 0, it is true for δ = 1. It is also true for δ = 1

2 and δ = 1
3 . We define (using

the axiom schema of specification) the set An to be:

An =
{
x ∈ X | ∀U∈O

(
B

(X, d)
1

n+1

(x) * U
)}

(3)

An is not empty for all n ∈ N since we are assuming the negation of the orignal
claim is true. That is, we are assuming for all δ > 0 there is an x ∈ X such that
no U in the open cover O completely contains the δ ball centered at x. Applying
this to δ = 1

n+1 we then see that An is a non-empty set for all n ∈ N. We then
(using the axiom of the power set and the axiom schema of specification) collect
a new set A defined by:

A = {An ∈ P(X) | n ∈ N } (4)

To be extremely pedantic and using the axioms precisely as stated, we are
defining A by:

A =

{
B ∈ P(X)

∣∣∣ ∃n∈N((x ∈ B)⇔ (
∀U∈O

(
B

(X, d)
1

n+1

(x) * U
)))}

(5)
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This reads, cryptically, that A is the set of all B such that B = An for some
n ∈ N. We then we examine the product set. Since the elements of A are
indexed by the natural numbers, we may write:∏

A =

∞∏
n=0

An =
{
f : N→

∞⋃
n=0

An | ∀n∈N
(
f(n) ∈ An

) }
(6)

Intuitively, an element f ∈
∏
A is a countably infinite tuple:

f = (a0, a1, . . . , an, . . . ) (7)

with the property that an ∈ An for all n ∈ N. This is for intuition, not rigor.
Now we note that An is non-empty for all n ∈ N. By the axiom of countable
choice (which is implied by the full axiom of choice), there is an element a ∈

∏
A.

What is this element? It is a sequence a : N→
⋃∞
n=0An such that for all n ∈ N

it is true that an ∈ An. Realizing that An ⊆ X for all n ∈ N, we see that⋃∞
n=0An ⊆ X, and so a is also a sequence a : N → X such that an ∈ An for

all n ∈ N. But what does it mean to be in An? We now go back to Lebesgue’s
number lemma, an in An means for every open set U in the open cover O it
is not true that the 1

n+1 ball centered about an is contained in U . That is,
a : N→ X is a sequence such that, for all n ∈ N, and for all U ∈ O, we have:

B
(X, d)

1
n+1

(an) * U (8)

In the proof of Lebesgue’s number lemma this was entirely swept under the
rug. Obviously I can pick a point an for each n satisfying the negation of our
original claim. But just because something is obvious, does not make it true.
The axiom of countable choice can not be proven using the other axioms of
set theory. Defining sequences recursively requires some form of the axiom of
choice as well. Since the axiom of choice is confusing and controversial it is
all too common to appeal to more intuitive language that hides the axiom of
choice, but it is important for a mathematician to realize that it is indeed there.

We have appealed to the full axiom of choice as well. For the most part we were
satisfied with the axiom of countable choice, which is a far less contraversial
axiom, but at times we have used the stronger version. Consider the equivalence
of compactness theorem. We said consider a Cauchy sequence a : N → X that
does not converge in the metric space (X, d). To converge means there is an
x ∈ X such that for all ε > 0 there is an N ∈ N such that n ∈ N and n > N
implies d(x, an) < ε. We denoted this by an → x. Using quantifer notation,
convergence means:

∃x∈X∀ε>0∃N∈N∀n∈N,n>N
(
d(x, an) < ε

)
(9)

The negation of this means for all x ∈ X there is an ε > 0 such that for all
N ∈ N there exists an n ∈ N with n > N such that d(x, an) ≥ ε. That is:

∀x∈X∃ε>0∀N∈N∃n∈N,n>N
(
d(x, an) ≥ ε

)
(10)
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I conveniently labelled such an ε as εx to denote that εx is a positive value that
makes the property fail for the point x ∈ X. Why am I allowed to do this? I
define the set Ax ⊆ R as follows:

Ax =
{
ε ∈ R+ | ∀N∈N∃n∈N,n>N

(
d(x, an) ≥ ε

) }
(11)

Since we are assuming the sequence does not converge, for all x ∈ X, the set
Ax is non-empty. We then consider the collection of all of these sets A:

A = {Ax ∈ P(R+) | x ∈ X } (12)

Again, being overly formal, we are writing:

A =
{
B ∈ P(R+)

∣∣ ∃x∈X((ε ∈ B)⇔ ∀N∈N∃n∈N,n>N(d(x, an) ≥ ε
))}

(13)

This is the set of all B ⊆ R+ such that B = Ax for some x ∈ X. We consider the
product set. This time, unlike in the previous example, since we don’t know the
cardinality of X, we may not be able to index the product set over the natural
numbers. We may still write:∏

A =
∏
x∈X

Ax =
{
f : X →

⋃
x∈X

Ax | ∀x∈X
(
f(x) ∈ Ax

) }
(14)

Since Ax ⊆ R+ for all x ∈ X, an element of
∏
A is a function f : X → R+.

That is, a function from our metric space to the positive real numbers. This
function f has the special property that for all x ∈ X, f(x) is an element of Ax.
That is, f(x) is a positive number εx = f(x) such that for all N ∈ N there is
an n ∈ N with n > N such that d(x, an) ≥ εx. Since none of the elements of A
are empty, by the axiom of choice the product is non-empty. Let ε ∈

∏
A be an

element of the product. That is, let ε : X →
⋃
x∈X Ax be our choice function.

Given x ∈ X, instead of writing the image of x as ε(x), let us write it as εx.
Then εx is a value such that for all N ∈ N there is an n ∈ N with n > N such
that d(x, an) ≥ εx, and now we’re back to where we started in the proof of the
equivalence of compactness. The axiom of choice justifies the notation εx where
we choose a value εx > 0 for each x.

3


