Point-Set Topology: Homework 3

Summer 2023

Problem 1 (Separability)

A separable topological space is a space (X, τ) such that there is a countable subset $A \subseteq X$ such that $\operatorname{Cl}_{\tau}(A) = X$. A metric space is separable if and only if it is second-countable. This feature is special to metric spaces. Take \mathbb{R} with the standard topology, and equip \mathbb{R}/\mathbb{Z} with the quotient topology. Intuitively this is infinite many circles all touching at 0. It is not first-countable, and hence not second-countable, even though \mathbb{R} is. It is still separable.

• (6 Points) Let (X, τ) be a separable topological space. Let R be any equivalence relation on X. Prove that $(X/R, \tau_{X/R})$ is separable. That is, separability is a topological property preserved by quotients.

Problem 2 (Embeddings)

The bug-eyed line is a quotient space of $X = \mathbb{R} \times \{0, 1\}$ where \mathbb{R} has the standard Euclidean topology and $\{0, 1\}$ has the discrete topology. X is given the product topology. We identity (x, 0) with (x, 1) for all $x \neq 0$ and then take the quotient of X under this relation. This idea is shown in Fig. 1

• (6 Points) Prove that it is impossible to embed the bug-eyed line into \mathbb{R}^n for all $n \in \mathbb{N}$.

Problem 3 (Quotients)

Let $X = \mathbb{R}/\mathbb{Q}$, equipped with the quotient topology where \mathbb{R} carries the usual Euclidean topology.

• (4 Points) Is this space Hausdorff? Is it Fréchet?

Problem 4 (Products)

Consider topological spaces (X, τ_X) , (Y, τ_Y) , and (Z, τ_Z) . Equip $X \times Y$ with the product topology $\tau_{X \times Y}$.

• (6 Points) Prove that a function $f: Z \to X \times Y$ is continuous if and only if the component functions $\operatorname{proj}_X \circ f: Z \to X$ and $\operatorname{proj}_Y \circ f: Z \to Y$ are continuous.

Figure 1: The Bug-Eyed Line Construction