Point-Set Topology: Homework 4

Summer 2023

Problem 1 (Comparing Topologies)

Let X be a set, and τ and τ' topologies on X with $\tau \subseteq \tau'$.

- 1. (2 Pts) Prove that if (X, τ) is Fréchet, then (X, τ') is.
- 2. (2 Pts) Prove that if (X, τ) is Hausdorff, then (X, τ') is.
- 3. (3 Pts) If (X, τ) is regular, does this imply (X, τ') is? Prove this or provide a counterexample.
- 4. (3 Pts) If (X, τ) is normal, does this imply (X, τ') is? Prove this or provide a counterexample.

Problem 2 (The Sorgenfrey Line)

The Sorgenfrey line is the real line \mathbb{R} with the left-interval topology. That is, the topology is generated by sets of the form [a, b) for $a, b \in \mathbb{R}$.

- 1. (3 Pts) A zero dimensional space is a topological space (X, τ) such that there is a basis \mathcal{B} of sets that are both open and closed. Prove that the Sorgenfrey line is zero dimensional. (Hint: Prove [a, b) is open and closed in this topology).
- 2. (5 Pts) Prove that a zero dimensional topological space is completely regular.
- 3. (2 Pts) Letting $\tau_{\mathbb{R}}$ and τ_S be the Euclidean and Sorgenfrey topologies, respectively, on \mathbb{R} , prove that $\tau_{\mathbb{R}} \subseteq \tau_S$. [Hint: What is a basis of $\tau_{\mathbb{R}}$? Are these elements open in τ_S ?]
- 4. (8 Pts) Prove that the Sorgenfrey line is Lindelöf. That is, every open cover has a countable subcover. Do this by showing that any open cover of the Sorgenfrey line by basis elements (sets of the form [a, b)) has a countable subcover. [Hint: Sets of the form (a, b) are open in the Euclidean topology. Since the Euclidean topology is second-countable, every subspace is Lindelöf. Prove that, if \mathcal{O} is an open cover of the Sorgenfrey line of basis elements [a, b), then the sets of the form (a, b) cover all but a countable subset of \mathbb{R}].

Problem 3 (The Sorgenfrey Plane)

A regular Lindelöf space is paracompact, meaning the Sorgenfrey line is a paracompact Hausdorff space. By Dieudonné's theorem it is therefore normal. Here you will prove that normality is not preserved by products.

- 1. (3 Pts) Prove that the product of two Hausdorff spaces is Hausdorff.
- 2. (3 Pts) Prove that the product of two regular spaces is regular.
- 3. (5 Pts) The Sorgenfrey Plane is the product of the Sorgenfrey line with itself. The anti-diagonal:

$$\Delta = \{ (x, -x) \in \mathbb{R}^2 \mid x \in \mathbb{R} \}$$
(1)

has the strange property that it is a discrete subspace. That is, the subspace topology of Δ is the power set of Δ . Prove this.

4. (5 Pts) The set K of points in Δ with rational coordinates:

$$K = \{ (x, -x) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \}$$

$$\tag{2}$$

is a closed subset of a closed subspace, so it too is closed. As is the set $\Delta \setminus K$. These sets cannot be separated by open sets, showing us that the Sorgenfrey plane is not normal. Prove that the Sorgenfrey plane is not paracompact, not Lindelof, and not second-countable.

5. (4 Pts) Prove that a closed subspace of a separable space need not be separable.

Problem 4 (Manifolds)

A locally-Euclidean topological space is a topological space (X, τ) such that for all $x \in X$ there is an open set $\mathcal{U} \in \tau$ with $x \in \mathcal{U}$ and a continuous injective open mapping $\varphi : \mathcal{U} \to \mathbb{R}^n$ for some $n \in \mathbb{N}$. A topological manifold is a topological space (X, τ) that is:

- 1. Hausdorff.
- 2. Second-Countable.
- 3. Locally-Euclidean.

The classic examples are Euclidean spaces \mathbb{R}^n , the circle, sphere, and higherdimensional analogues \mathbb{S}^n , the Klein bottle, and the projective spaces \mathbb{RP}^n . The Hausdorff and second-countable conditions are not redundant. The bugeyed line is second-countable and locally-Euclidean, but non-Hausdorff. The long line is Hausdorff and locally-Euclidean, but not second-countable.

You may use the fact that a locally-compact Hausdorff space is regular, should you find it useful.

- 1. (5 Pts) Recall that locally compact means for all x there is an open set \mathcal{U} and a compact subset K such that $x \in \mathcal{U}$ and $\mathcal{U} \subseteq K$. Prove that a topological manifold is locally compact.
- 2. (3 Pts) Prove that a topological manifold is $\sigma\text{-compact.}$
- 3. (3 Pts) Prove that a topological manifold is paracompact. [Hint: Use your theorems. Not much work needed here.]
- 4. (3 Pts) Prove that a topological manifold is metrizable. [Hint: Again, appeal to theorems. Piece together the puzzle, not much effort should be applied here.]