Point-Set Topology: Homework 1

Summer 2023

Problem 1 (Hilbert Systems)

The Hilbert System is a collection of axioms for how propositional logic should
behave. It claims the following four statements are true and do not need proof.
Let P, @, and R be propositions (statements that are true or false). Then the
following are true:

P=P (1)
P=(Q=P) (2)
(P=(Q=R)=((P=Q) = (P=R) (3)
(-P=-Q)=(Q=P) (4)

Here — is the negation operator. =P means not P.

e (8 Points) Give the truth table for each of the four axioms. Using this,
should we accept the axioms as valid?

e (4 Points) The first axiom is redundant. Together with modus ponens
(which is the axiom that if P implies @ is true, and if P is true, then @
is true), the second and third axiom can be used to prove that the first
axiom is true. Prove this (partial credit will of course be given).

Solution. The truth table for P = P is given in Tab. 1. In general, P = @ is
only false when P is true and @ is false. So P = P would only be false when
P is true and P is false, a contradiction. So P = P is always true, unless there
exists a contradiction in our language (hopefully there doesn’t).

The truth table for Hilbert’s second axiom, P = (Q = P), is given in Tab. 2.
Again, P = @ is false only when P is true and @ is false. So P = (Q = P) is

P ‘ P=P
False True
True True

Table 1: Truth Table for Hilbert’s First Axiom



P | Q@ |Q=P|P=(Q=P)

False | False True True
False | True False True
True | False True True
True | True True True

Table 2: Truth Table for Hilbert’s Second Axiom

(P=Q) = (P=(Q=R)=
P Q R |P=Q|P=>R|Q=R|P=(Q=R) (P=R) (P=Q) = (P=R)
False | False | False | True True True True True True
False | False | True True True True True True True
False | True | False | True True False True True True
False | True | True True True True True True True
True | False | False | False False True True True True
True | False | True False True True True True True
True | True | False True False False False False True
True | True | True True True True True True True

Table 3: Truth Table for Hilbert’s Third Axiom

false only when P is true and @ = P is false. Examining () = P, this is only
false when @ is true and P is false. So if P is true, Q = P is true, meaning
P = (Q = P) is also true.

The massive truth table for Hilbert’s third axiom is given in Tab. 3. The only
case to inspect is when P = (@ = R) is true and (P = Q) = (P = R) is false.
In this case P must be true, otherwise P = @ would true, and P = R would be
true, and hence (P = Q) = (P = R) would be true. But since P = (Q = R)
is true, and since P is true, Q = R must be true. Now ) must be true, for
if not P = @ would be false, since P is true, and then (P = Q) = (P = R)
would be true. We have concluded thus far that P and @Q are true, so P = @ is
true. But (P = Q) = (P = R) is supposed to be false, and thus P = R must
be false. And since P is true, R must be false. That is, P is true, @) is true,
and R is false. We may thus conclude that @ = R is false. But P = (Q = R)
is true, and P is true, meaning Q = R is true, a contradiction. So the scenario
that P = (@ = R) is true and (P = @) = (P = R) is false never occurs,
unless we have a contradiction.

The final truth table is given in Tab. 4. This is the law of the contrapositive. Note

Pl Q| -P|Q|-P>Q|Q=P|(-P=>-0Q)=(Q=R)

False | False | True | True True True True
False | True | True | False False False True
True | False | False | True True True True
True | True | False | False True True True

Table 4: Truth Table for Hilbert’s Fourth Axiom



that =P = —@Q and @) = P have identical columns. This is because they are
equivalent statements. Mathematicians often use the law of the contrapositive
to prove statements P = (Q when —(Q) = —P is easier.

This is not an independent system of axioms, the first statement can be proved
from axioms 2 and 3 (together with modus ponens). By setting R = P and
Q = (P = P) we obtain:

(P=(@Q=R)=(P=Q) = (P=R) (Axiom 3)
P=(Q=P) (Axiom 2)
(P=(P=P)=P))=(P=(P=P)=(P=P) (Substitute)
P= ((P=P)=P) (Substitute)
(P=(P=P)=(P=P) (Modus Ponens)

P= (P=P) (Axiom 2)

P=P (Modus Ponens)

So the negation of the first axiom would be inconsistent with the others. O



Problem 2 (Disjunction and Conjunction)

The logical or and logical and are not primitives, but rather can be defined with
implication and negation. It is common to use the V symbol for or and the A
symbol for and. PV @ then reads P or @, and P A Q reads P and ). These
can be defined as follows:

(PVQ) = (-P = Q) (5)
(PAQ) & ~(P=-Q) (6)

Where < means is equivalent to or if and only if.

e (2 Points) PV @ is only false when both P and @) are false. Explain (with
words, no mathematics needed here) when =P = @ is false. Create the
truth table for =P = @ and explain why this is a valid choice for the
logical or.

e (2 Points) P A Q is only true when both P and @ are true. Explain why
—(P = —Q) is a good choice for logical and. Construct the truth table
for this.

e (6 Points) Prove that or is commutative. That is, P V @ if and only if
@ Vv P. You must prove:

(-P=Q)=(-Q=P) (7)

((Q=P)= (-P=Q) (®)

Hint: Use your Hilbert system.

Solution. P = (@ is only false when P is true, yet @ is false. Introducing
negation, =P = @ is false when —P is true and @ is false. —P being true
means P is false, and hence =P = (@ is false only when P and @ are both false.
This is the same condition for logical or, meaning it is a good candidate for the
definition of PV @. The truth table is given in Tab. 5.

Logical and, or conjunction, is only true when both propositions are true. P =
—(Q is only false when P and @ are both true, meaning —(P = —Q) is only true
when both P and @ are true. The truth table is given in Tab. 6.

We can use the Hilbert system to prove some of the basic laws of logical or and
and, such as commutativity, associativity, and much more. To prove commuta-
tivity we wish to show that:

PVvQ&eQVP (9)
which is equivalent to two implications:

PVQ=QVP (10)
QVP=PVQ (11)



P ‘ Q ‘ -P ‘ﬂPéQ‘P\/Q
False | False | True False False

False | True | True True True
True | False | False True True
True | True | False True True

Table 5: Truth Table for Disjunction

P | Q | Q |[~(P=-Q) |PrQ

False | False | True False False
False | True | False False False
True | False | True False False
True | True | False True True

Table 6: Truth Table for Conjunction

Since we have defined disjunction using implication and negation, we can expand
the V symbol out and get the following implications:

(-P=Q)= (-Q=P) (12)
(-Q@=P)= (-P=Q) (13)

Let’s prove these two claims. Hilbert’s fourth says (-P = —Q) = (Q = P).
Substituting P = P and Q@ = —Q, and invoking the law of double negation

(Q & ——Q), we get:
(-P=Q)=(-Q=P) (14)

Which is the first desired implication. Returning to Hilbert’s fourth axiom,
(=P = Q) = (Q = P), if we substitute P = @ and Q = —P, we get:

(-Q@=P)= (-P=Q) (15)

which is the second desired implication. Hence PVQ = QVP and QVP = PVQ.
That is, the logical or is commutative. O



Problem 3 (Set Arithmetic)

Two sets A and B are equal if and only if A C B and B C A. We use this often
to prove two expressions are equal. Remember, A C B if and only if x € A
implies x € B.

e (3 Points) Prove the distributive law of unions:

AU(BNC)=(AUB)N(AUC) (16)

e (3 Points) Prove the distributive law of intersections:

AN(BUC)=(ANB)U(ANC) (17)

e (3 Points) Prove De Morgan’s Law of Unions. If A, B C X, then:

X\ (AUB) = (X\A)n(X\B) (18)

e (3 Points) Prove De Morgan’s Law of Intersections. If A, B C X, then:

X\(ANB)=(X\A)U(X\B) (19)

Solution. Let’s start with AU (BNC) = (AUB)N (AUC). We do this by
showing the left-hand side is a subset of the right-hand side, and vice-versa.
Suppose x € AU (BN C). Then, by definition of union, z € A or x € BN C.
Then z € Aorxz € Band x € C. Butif x € A, then x € A or z € B, by
definition of or. Similarly if x € A, then x € A or x € C. Hence if z € A
thenx € Aor Bandz € Aor C,soz € (AUB)N(AUC). Ifz € BNC,
then z € B and C by definition of intersection. Again by our use of the word
or,x € Aorx € Bandz € Aorz € C,s0 x € (AUB)N(AUC(C), meaning
AU(BNC) C (AUB)N(AUC). In the other direction, if z € (AUB)N(AUC),
then z € AUB and x € AUC. So either x € A is true, or x € B and z € C'is
true, meaning x € AU (BN C), and hence (AUB)N(AUC) C AU(BNC).
Thus, AU(BNC)=(AUB)N(AUCQC).

For the next equality we need to show that AN (BUC) C (ANB)U((ANC)
and (ANB)U(ANC)C AN (BUC). Suppose x € AN (BUC). Thenxz € A
and x € BUC, by the definition of intersection. But then z € A and = € B,
or x € A and z € C, by definition of union. Hence x € AN B or z € ANC,
meaning z € (AN B)U(ANC). In the other direction, if z € (ANB)U(ANC),
thenx € ANBorz e ANC. Butthenz € Aand x € B,orx € Aand z € C,
by definition of intersection. This means x € A and either x € B or = € C,
meaning z € AN (BUC).

Now for the De Morgan laws. Suppose € X \ (AUB). Then z ¢ AU B, which
means ¢ A and x ¢ B. Thatis, z € (X \ A)N(X\ B),so X\ (AUB) C



(X\A)N(X\ B). Now suppose z € (X \ A)N (X \ B). Then z € X \ A and
rz€ X\ B. Thatis, v ¢ Aand z ¢ B, and hence t ¢ AUB. Butifx ¢ AUB
and z € X, then z € X \ (AU B). Therefore (X \ A)N(X\ B) C X\ (AU DB),
and thus (X \ A)N(X\B)=X\ (AUB).

The other De Morgan law is dealt with similarly. Suppose z € X \ (AN B)
Then = ¢ AN B, meaning x ¢ A or x ¢ B. But then z € (X \ 4) U(X \ B),
implying X \ (ANB) C (X \ A)U (X \ B). Now suppose z € (X \ A)U (X \ B)
Then z ¢ A or z ¢ B. But then « ¢ AN B, and therefore x € X \ (AN B). We
conclude that X \ (AN B) = (X\A)U (X \ B). O



Problem 4 (The Cantor-Schroeder-Bernstein Theorem)

There are two versions of the Cantor-Schroeder-Bernstein theorem. The first
says that if A and B are sets, and if f: A — B and g : B — A are injective,
then there is a bijection h : A — B. The second states that if A and B are
sets, and if f: A — B and g : B — A are surjective, then there is a bijection
h:A— B.

e (3 Points) Prove that if f : A — B is an injective function, then there is
a surjection g : B — A.

e (3 Points) Prove that if f : A — B is a surjective function, then there is
an injection g : B — A.

e (4 Points) Prove that the truth of the first Cantor-Schroeder-Bernstein
theorem implies the validity of the second, and vice-versa.

Solution. The problem is vacuous if A or B are empty, so first suppose they
are not. Since A is non-empty, pick some x € A. Given an injective function
f:A— B, define g: B — A as follows:

o(b) = {a € A such that f(a) =b

. . (20)
x if such an element does not exist

There’s no axiom of choice needed here, since f is injective we have a well-
defined function. g is surjective. Given a € A let b = f(a). Then g(b) = a by
definition.

Given a surjection f : A — B, for each b € B pick some a;, € A such that
f(ap) = b and define g(b) = ap. This choosing does invoke the axiom of choice,
but very subtly. The function g is an injective function from B to A since
g(bo) = g(b1) implies ap, = ap,, which means:

bO = f(a'bo) = f(aln) = bl (21)

and hence by = by, so g is injective.

Now suppose the first Cantor-Schroeder-Bernstein theorem is true. That is,
if there exists injective functions f : A — B and g : B — A, then there is
a bijection h : A — B. Let’s use this to prove the second Cantor-Schroeder-
Bernstein theorem. Suppose f : A — B and §: B — A are surjective functions.
By the previous part of the problem there then exists injective functions f : A —
B and g : B — A. But then by the first Cantor-Schroeder-Bernstein theorem
there is a bijection h : A — B. Hence the existence of surjective functions
f:A— Band §: B— B implies the existence of a bijection h : A — B.

In the other direction, suppose the second Cantor-Schroeder-Bernstein theorem
holds. That is, if f: A — B and g : B — A are surjective functions, then there



is a bijection h : A — B. Given injective function f: A — B and §: B — A,
by the previous part of the problem there are surjective functions f : A — B
and g : B — A. Then by the second Cantor-Schroeder-Bernstein theorem there
is a bijection h : A — B. Hence the existence of injective functions f : A — B
and §: B — A implies the existence of a bijection h: A — B.

Since the first Cantor-Schroeder-Bernstein theorem implies the second, and vice-
versa, all you need to do is prove one of them, and the second immediately
follows. Most texts usually prove the first one, that if there exists injective
function f: A — B and g : B — A, then there is a bijection h : A — B. O



Problem 5 (Induced Metrics)

A norm on R” is a function that assigns a length to each point. That is, a
function || - || : R™ — R such that for all points x,y € R™ and all real numbers
a € R we have:

x| =0 (Positivity)
I[x[[=0=x=0 (Definiteness)
llax|| = |a| - [[x]] (Homogeneity )
llx+yll < |Ix]]+ [yl (Triangle-Inequality)

The metric induced by a norm is:

d(x, y) =[x -yl (22)
e (4 Points) Prove that the induced metric is a metric on R™.

e (6 Points) A convex set is a set A C R™ such that for all x,y € A and
for all 0 <t¢ <1 it is true that tx + (1 — t)y € A. Prove that open balls
centered about the origin are convex when the metric comes from a norm.

Solution. This function is indeed a metric. It is positive-definite since ||x]| is
non-negative and:

d(x,y)=0 (23)

& lx—yl =0 (24)
Sx—-y=0 (25)
ex=y (26)

It is symmetric since:

d(x,y) =[x —yll (27)
= 1=y =x)l| (28)
= [ =1y — ]| (29)
= [ly — x| (30)
=d(y, x) (31)

Lastly, the triangle inequality is satisfied. We have, for any x,y,z € R™:

w
[\

N N N N N~
w
Ut
DD D D=

d(x, y) = |x -yl
=[x+0-yll
=[x+ (-z+2) -yl
=|l(x—2)+ (z -yl
< |lx—z|[+]lz -yl
= |[x —z[| + [y — 2|
=d(x, z) + d(y, z)

w w
=~ W

W W W
xR 3 D
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So d is a metric.

The balls in a normed vector space are convex. Since translation 7 : R® — R™,
defined by T'(x) = x + a for some fixed a € R", is a global isometry, and since
[lax|| = |a| ||x|| for all real a € R, we can consider open balls of radius 1 centered
at the origin. Let x, y € R™ be such that d(x, 0) < 1 and d(y, 0) < 1. In other
words, suppose ||x|| < 1 and ||y|| < 1. Then for any 0 < ¢ < 1 we have:

l[tx + (1 =)yl < [[tx|[ + [|(1 - t)yl| (Triangle Inequality)

= [t [|x]] + |1 = ¢ ||yl| (Factoring Scalars)

<[t + 11—t (Since ||x|| <1 and ||y|] < 1)

=t+1—t (Since 0 <t < 1)

=1 (Simplify)

And hence this point lies in the unit ball as well. O
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Problem 6 (Connected Subsets)

(4 Points) A connected subset of a metric space (X, d) is a subset A C X such
that it is impossible to write A = U UV where U and V are disjoint non-empty
open sets. Give an example that shows that open balls do not need to be
connected.

Solution. There are many examples, but the easiest is probably the discrete
metric on a two point set. Let X = {0, 1} and d be the discrete metric on X.
The ball of radius 2 centered about zero is disconnected since it can be written
as the union of the ball of radius 1 about 0 and the ball of radius 1 about 1, two
non-empty disjoint open sets. That is, the set {0, 1}, which is the open ball of
radius 2 centered at 0, can be written as the union of {0} and {1}, which are
the open balls of radius 1 centered about 0 and 1, respectively. O
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