
Point-Set Topology: Homework 2

Summer 2023

Problem 1 (Subspaces)

The inclusion mapping of a subset A ⊆ X into X is the function ιA : A → X
defined by ιA(x) = x.

� (1 Point) Prove that if (X, d) is a metric space, and if (A, dA) is a metric
subspace, then ιA is continuous.

� (3 Points) Suppose (X, dX) and (Y, dY ) are metric spaces and let A ⊆ X
be a subset and dA be the subspace metric. Prove that f : Y → A is
continuous if and only if ιA ◦ f : Y → X is continuous.

� (2 Points) Prove that if f : X → Y is a continuous function from a metric
space (X, dX) to a metric space (Y, dY ), and if (A, dA) is a subspace of
(X, dX), then the restriction f |A : A → Y , defined by f |A(x) = f(x), is
continuous.

� (4 Points) Prove that if f : X → Y is a homeomorphism, and if A ⊆ X,
then f |A : A→ f [A] is a homeomorphism.

Solution. Let a : N→ A be a convergent sequence with an → x for some x ∈ A.
That is, dA(an, x)→ 0. But then:

d
(
ιA(an), ιA(x)

)
= dA

(
ιA(an), ιA(x)

)
(Definition of dA)

= dA(an, x) (Definition of ιA)

and hence d(ιA(an), ιA(x))→ 0, so ιA(an)→ ιA(x), meaning ιA is continuous.

Suppose f : Y → A is continuous. Then since ιA : A→ X is continuous, ιA ◦ f
is the composition of continuous functions, which is continuous. In the other
direction, suppose ιA ◦f is continuous. Let a : N→ Y be a convergent sequence
with limit y ∈ Y . We must prove that f(an) → f(y). Let ε > 0 be given.
Since, by hypothesis, ιA ◦ f is continuous, there is an N ∈ N such that n ∈ N
and n > N implies d

(
(ιA ◦ f)(an), (ιA ◦ f)(y)

)
< ε. But then, by definition

of dA and ιA, we have that n > N implies dA
(
f(an), f(y)

)
< ε, and therefore

f(an)→ f(y). That is, f : Y → A is continuous.
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For part 3, let a : N→ A be a convergent sequence with limit x ∈ A. We must
prove f |A(an)→ f |A(x). Let ε > 0. Since A ⊆ X and a : N→ A is a convergent
sequence in A, a : N→ X is a convergent sequence in X as well with the same
limit. But f : X → Y is continuous, so f(an) → f(x). But then, since ε > 0,
there is an N ∈ N such that n ∈ N and n > N implies dY

(
f(an), f(x)

)
< ε. But

f |A(an) = f(an) and f |A(x) = f(x), so n > N implies dY
(
f |A(an), f |A(x)

)
< ε.

Hence f |A(an)→ f |A(x) and f |A is continuous.

Lastly, we are to prove the restriction of a homeomorphism to a subspace yields
a homeomorphism to the image. The restriction is continuous by the previous
problem. Since f : X → Y is bijective, it is injective, and hence f |A is injective
as well. Since the co-domain is f [A], the function is also surjective. So f |A :
A → f [A] is a continuous bijection. We must prove the inverse function is
continuous. But the inverse function (f |A)−1 is f−1|f [A], the restriction of f−1

to f [A]. But f−1 is continuous since f is a homeomorphism. But then f−1|f [A] is
the restriction of a continuous function to a subspace, meaning it is continuous.
Therefore (f |A)−1 is continuous, and f |A : A→ f [A] is a homeomorphism.
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Problem 2 (Continuity)

We have proven the equivalence of three definitions of continuity. The definition
is that f maps convergent sequences to convergent sequences. The calculus ε−δ
statement is equivalent to this, as is the fact that the pre-image of open sets is
open. Continuity can be described by forward images as well.

� (6 Points) Let (X, dX) and (Y, dY ) be metric spaces. Prove that f : X →
Y is continuous if and only if for all x ∈ X and for all open subsets V ⊆ Y
with f(x) ∈ V there is an open subset U ⊆ X such that x ∈ U and
f [U ] ⊆ V.

Solution. It is easiest to prove this using the fact that a function is continuous
if and only if the pre-image of an open set is open. First suppose f : X → Y is
continuous. Let x ∈ X and let V ⊆ Y be an open set such that f(x) ∈ V. Since
f is continous we have that U = f−1[V] is open. But then x ∈ U and f [U ] ⊆ V,
by definition of images and pre-images. Hence a continuous function has the
desired property.

In the other direction, suppose f : X → Y is such that for all x ∈ X and for all
open sets V ⊆ Y with f(x) ∈ V there exists an open set U ⊆ X such that x ∈ U
and f [U ] ⊆ V. We must prove that the pre-image of an open set is open in order
to conclude that f is continuous. Let V ⊆ Y be open. If V is empty we are done,
since f−1[∅] = ∅. Similarly, if f−1[V] = ∅ there is nothing to prove. So suppose
V ⊆ Y is an open set whose pre-image is not empty. Let x ∈ f−1[V]. Then, by
definition of pre-image, f(x) ∈ V. By hypothesis there is then open open set
U ⊆ X such that x ∈ U and f [U ] ⊆ V. But if U is open and x ∈ U , then there

is an ε > 0 such that B
(X, dX)
ε (x) ⊆ U . But then B

(X, dX)
ε (x) ⊆ f−1[V]. That is,

for all x ∈ f−1[V] there is an ε ball about x contained entirely inside of f−1[V],
and hence f−1[V] is open. Therefore f is continuous.

3



Problem 3 (Compact Spaces)

For metric spaces there are many equivalent ways of defining compactness. Your
job is to prove some of these equivalences.

� (4 Points) Prove that (X, d) is compact if and only if for every sequence
of closed non-empty nested sets, the intersection is non-empty. That is, if
C : N→ P(X) is a sequence of closed sets such that Cn 6= ∅ and Cn+1 ⊆ Cn,
then

⋂
n∈N Cn is non-empty.

� (2 Points) Prove that (X, d) is compact if and only if for every sequence of
nested proper open subsets, the union is not the whole space. That is, if
U : N→ P(X) is a sequence of open sets such that Un 6= X and Un ⊆ Un+1,
then

⋃
n∈N Un is not equal to X. [Hint: What is the complement of an

open set? Can the previous part of the problem help?]

Solution. There are a few ways to prove this. Let’s use sequences first. Suppose
(X, d) is compact and C : N→ P(X) is a sequence of nested closed non-empty
sets. Then for each n ∈ N, since Cn is non-empty, there is an an ∈ Cn. Since
(X, d) is compact and a : N → X is a sequence in X, there is a convergent
subsequence ak. Let x ∈ X be the limit. Then for all n ∈ N, x ∈ Cn. To see
this, given N ∈ N, for all n > N we have akn

∈ Ckn
, and since kn > N this

implies akn
∈ CN since the sets are nested. So ak is convergent sequence that is

eventually contained in Cn, and Cn is closed so it contains its limit points, and
therefore x ∈ Cn. Since this is true for all n ∈ N, we have that x ∈

⋂
n∈N Cn.

That is, the intersection is non-empty.

Now suppose (X, d) is a metric space with the property that for all nested
sequences of non-empty closed sets C : N → P(X) it is true that

⋂
n∈N Cn is

non-empty. Let us prove that (X, d) is compact. Suppose not. Then there is a
sequence a : N→ X with no convergent subsequence. Then the set:

A = {an ∈ X | n ∈ N } (1)

is closed. For if not then there is a point x ∈ X that is a limit point of this
set, but is not contained in it. But if x is a limit point of A then there is
a sequence of points in this set that converges to x. But then the sequence
a : N → X would have a convergent subsequence, contradicting the claim that
no such subsequence exists. Hence A = { an ∈ X | n ∈ N } is closed.

Alternatively, if you’d rather, we can show X \A is open. Give x ∈ X \A there

must be some ε > 0 such that B
(X, d)
ε (x) ∩ A = ∅. Otherwise, if for all ε > 0

there is an n ∈ N such that d(x, an) < ε we could find a subsequence of a that
converges to x, contradicting the claim that a has no such subsequences. So
about every element of X \ A we can place an ε ball contained entirely inside
of X \A, and hence this set is open. Since X \A is open, A is closed.
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Moreover, A \ { a0 } is closed. Since no subsequence of a converges to a0 there

must be some ε > 0 such that B
(X, d)
ε (a0)∩A = { a0 }. Since open balls are open,

the set A\B(X, d)
ε (a0) is the difference of an open set from a closed set, which is

closed. Since B
(X, d)
ε (a0) ∩A = { a0 } we have that A \B(X, d)

ε (a0) = A \ { a0 }.
So A \ { a0 } is closed. Even more, for all n ∈ N if we define the set:

Bn = { a0, . . . , an−1 } (2)

then the set A \Bn is closed. Denote this set by Cn:

Cn = A \Bn (3)

But then C : N → P(X) is a nested sequence of non-empty closed sets, so the
intersection is non-empty by hypothesis. But:⋂

n∈N
Cn =

⋂
n∈N

(A \Bn) (4)

= A \
⋃
n∈N

Bn (5)

= A \A (6)

= ∅ (7)

A contradiction. Hence (X, d) is compact.

As mentioned there are many ways to prove this claim. Let’s use open sets.
We proved that a metric space is compact if and only if for every open cover
O of X there is a finite subcover ∆ ⊆ O. Suppose (X, d) is compact and let
C : N→ P(X) be a nested sequence of closed non-empty sets with the property
that

⋂
n∈N Cn = ∅. Define:

Un = X \ Cn (8)

Then the set O = {Un | n ∈ N } is and open cover of X since:

X = X \ ∅ (9)

= X \
⋂
n∈N
Cn (10)

=
⋃
n∈N

(X \ Cn) (11)

=
⋃
n∈N
Un (12)

=
⋃
O (13)

But (X, d) is compact, so there is a finite subcover ∆ = {Un0
, . . . , Unm

}. Let
UN be the element of ∆ with the largest index. Since the sets Cn are nested,
Cn+1 ⊆ Cn, so are the sets Un. That is, Un ⊆ Un+1. But then {UN } is an open
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cover of X, meaning UN = X. But then CN = X \ UN is empty, contradicting
the fact that all Cn are non-empty.

To use open sets for the converse of this statement we need the fact that a
metric space is compact if and only if it is countably compact. That is, for
every countable open cover O of X there is a finite subcover ∆ ⊆ O of X.
Compactness certainly implies countable compactness, since we can consider
arbitrary open covers O, not just countable ones. Let’s prove that countably
compact metric spaces are compact. If not, then there is a sequence a : N→ X
with no convergent subsequence. The set A described previously is closed:

A = {an ∈ X | n ∈ N } (14)

and the sets Cn = A \Bn are also closed. Moreover they are nested, Cn+1 ⊆ Cn,
and hence the sets:

Un = X \ Cn (15)

are open and nested, Un ⊆ Un+1. By similar reasoning as before, the collection
O = {Un | n ∈ N } forms an open cover of X. More than that, it is a countable
open cover, and since (X, d) is countably compact there is a finite subcover
∆ ⊆ O. Since the sets are nested, we may choose ∆ = {UN } for some N ∈ N.
But then UN = X, meaning CN = ∅. This implies that the set A is finite. But
a sequence a : N → A into a finite set must have a convergent subsequence, a
contradiction. Hence (X, d) is compact.

Note: Similar arguments do not hold for topological spaces. Countable com-
pactness and compactness can be different.

Using this, let’s show that a metric space with the nested intersection property
is countably compact (and hence compact). Suppose not. Then there is a
countable open cover O of (X, d) with no finite subcover. Since it is countable
there is a surjection U : N→ O. That is, we may list the elements as:

O = {U0, U1, . . . , } (16)

Define V : N→ τd as follows:

VN =

N⋃
n=0

Un (17)

The sets Vn are open, being the union of open sets, and nested, Vn ⊆ Vn+1.
Moreover, since O has no finite subcover, Vn 6= X for all n ∈ N. But then
Cn = X \ Vn is a sequence of non-empty nested closed sets. But then, by
hypothesis,

⋂
n∈N Cn is non-empty. Let x ∈

⋂
n∈N Cn. Then x ∈ Cn for all

n ∈ N, and hence x /∈ Vn for all n ∈ N. But O is an open cover, so x ∈ Un for
some n ∈ N, which implies x ∈ Vn, a contradiction. Hence (X, d) is countably
compact. Since countably compact metric spaces are compact, (X, d) is also
compact.
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The second part of the problem comes straight from the first part. If every
sequence U : N→ τd of nested open proper subsets of X is such that

⋃
n∈N Un 6=

X, then by taking complements we see that every sequence of nested non-empty
closed sets C : N→ P(X) has non-empty intersection, and therefore the space is
compact. Similarly, if the space is compact, then we have the nested intersection
property for closed sets. By looking at the complement we see that the union of
nested open proper subsets cannot be the entire space since it cannot contain
the element common to the intersection of the closed sets. So this is yet another
equivalent definition of compactness in a metric space.
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Problem 4 (Calculus)

With our tools from metric space theory, one of the harder theorems from
calculus becomes quite simple.

� (4 Points) Prove that if (X, dX) is compact, if (Y, dY ) is a metric space,
and if f : X → Y is continuous, then f [X] ⊆ Y is a compact subspace.

� (4 Points) The extreme value theorem states that if f : [a, b] → R is
continuous, then there is cmin, cmax ∈ [a, b] such that f(cmin) ≤ f(x) ≤
f(cmax) for all x ∈ [a, b]. Let’s take that up a notch. Prove that if (X, d)
is compact, and if f : X → R is continuous, then there are points cmin

and cmax such that f(cmin) ≤ f(x) ≤ f(cmax) for all x ∈ X. [Hint: The
previous part is enormously helpful.]

Solution. Let b : N → f [X] be a sequence. Since f : X → f [X] is surjective
there is a right-inverse g : f [X] → X with the property that (f ◦ g)(x) = x.
Let an = g(bn). Since (X, d) is compact there is a convergent subsequence ak.
Let x be the limit, akn → x. But f is continuous, so f(akn) → f(x). But
f(akn

) = bkn
, so bkn

→ f(x), and hence b has a convergent subsequence. Thus,
f [X] is a compact subspace of (Y, dY ).

To prove the extreme value theorem, note that f [X] ⊆ R is compact, so by
Heine-Borel it is closed and bounded. Since it is bounded there is a least upper
bound ymax and a greatest lower bound ymin. Since f [X] is closed ymin and ymax

are elements for f [X]. That is, there are xmin, xmax ∈ X such that f(xmin) =
ymin and f(xmax) = ymax. But then, since ymin and ymax are the greatest lower
bound and least upper bound of f [X], respectively, for all x ∈ X we have
f(xmin) ≤ f(x) and f(x) ≤ f(xmax), which is the desired property.
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Problem 5 (Product Spaces)

(6 Points) Given metric spaces (X, dX) and (Y, dY ), prove that all three product
metrics are topologically equivalent:

d1
(
(x0, y0), (x1, y1)

)
= dX(x0, x1) + dY (y0, y1) (18)

d2
(
(x0, y0), (x1, y1)

)
=
√
dX(x0, x1)2 + dY (y0, y1)2 (19)

d∞
(
(x0, y0), (x1, y1)

)
= max

(
dX(x0, x1), dY (y0, y1)

)
(20)

Solution. Topological equivalence is an equivalence relation, essentially since
equality is. If d0 is topologically equivalent to d1, then τd0

= τd1
, and hence

τd1
= τd0

, so d1 is topologically equivalent to d0. Reflexivity and transitivity
can similarly be checked. So let’s prove the metrics d1 and d∞ are equivalent,
as are the metrics d2 and d∞. Let’s start with d1 and d∞. Let r > 0. We must
find r′ > 0 and r′′ > 0 such that:

B
(X, d1)
r′

(
(x, y)

)
⊆ B(X, d∞)

r

(
(x, y)

)
(21a)

B
(X, d∞)
r′′

(
(x, y)

)
⊆ B(X, d1)

r

(
(x, y)

)
(21b)

Let r′ = r and r′′ = r/2. Then:

d1
(
(x0, y0), (x1, y1)

)
< r′ (22a)

⇒ dX(x0, x1) + dY (y0, y1) < r′ (22b)

⇒ max
(
dX(x0, x1), dY (y0, y1)

)
< r′ (22c)

⇒ max
(
dX(x0, x1), dY (y0, y1)

)
< r (22d)

And therefore:
B

(X, d1)
r′

(
(x, y)

)
⊆ B(X, d∞)

r

(
(x, y)

)
(23)

In the other direction:

max
(
dX(x0, x1), dY (y0, y1)

)
< r′′ (24a)

⇒ 2max
(
dX(x0, x1), dY (y0, y1)

)
< 2r′′ (24b)

⇒ dX(x0, x1) + dY (y0, y1) < 2r′′ (24c)

⇒ d1
(
(x0, y0), (x1, y1)

)
< r (24d)

so we may conclude:

B
(X, d∞)
r′′

(
(x, y)

)
⊆ B(X, d1)

r

(
(x, y)

)
(25)

Now to compare d2 and d∞. Again, choose r′ = r. We get:

d2
(
(x0, y0), (x1, y1)

)
< r′ (26a)

⇒
√
dX(x0, x1)2 + dY (y0, y1)2 < r′ (26b)

⇒ max
(
dX(x0, x1), dY (y0, y1)

)
< r′ (26c)

⇒ max
(
dX(x0, x1), dY (y0, y1)

)
< r (26d)
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and so:
B

(X, d2)
r′

(
(x, y)

)
⊆ B(X, d∞)

r

(
(x, y)

)
(27)

choosing r′′ = r/
√

2 we get:

max
(
dX(x0, x1), dY (y0, y1)

)
< r′′ (28a)

⇒ max
(
dX(x0, x1), dY (y0, y1)

)√
2 < r′′

√
2 (28b)

⇒
√

2max
(
dX(x0, x1), dY (y0, y1)

)2
< r′′

√
2 (28c)

⇒
√
dX(x0, x1)2 + dY (y0, y1)2 < r′′

√
2 (28d)

⇒ d2
(
(x0, y0), (x1, y1)

)
< r (28e)

Hence:
B

(X, d∞)
r′′

(
(x, y)

)
⊆ B(X, d2)

r

(
(x, y)

)
(29)

so d2 and d∞ are topologically equivalent.
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