# Point-Set Topology: Homework 3 

Summer 2023

## Problem 1 (Separability)

A separable topological space is a space $(X, \tau)$ such that there is a countable subset $A \subseteq X$ such that $\mathrm{Cl}_{\tau}(A)=X$. A metric space is separable if and only if it is second-countable. This feature is special to metric spaces. Take $\mathbb{R}$ with the standard topology, and equip $\mathbb{R} / \mathbb{Z}$ with the quotient topology. Intuitively this is infinite many circles all touching at 0 . It is not first-countable, and hence not second-countable, even though $\mathbb{R}$ is. It is still separable.

- (6 Points) Let $(X, \tau)$ be a separable topological space. Let $R$ be any equivalence relation on $X$. Prove that $\left(X / R, \tau_{X / R}\right)$ is separable. That is, separability is a topological property preserved by quotients.

Solution. Since $(X, \tau)$ is separable, there is a countable dense subset $A$. Let $q: X \rightarrow X / R$ be the quotient map, $q(x)=[x]$ where $[x]$ is the equivalence class of $x$, and let $B=q[A]$. Since $B$ is the image of a countable set, it too is countable. We must prove $\mathrm{Cl}_{\tau_{X / R}}(B)=X / R$. Let $\tilde{\mathcal{C}} \subseteq X / R$ be a closed set containing $B$. But $q$ is continuous, and so the pre-image of closed sets is closed, meaning $q^{-1}[\tilde{\mathcal{C}}]$ is closed. Let $\mathcal{C}=q^{-1}[\tilde{\mathcal{C}}]$. Then $\mathcal{C}$ is a closed set that contains $A$ since $q[A]=B$. But if $A \subseteq \mathcal{C}$ and $\mathcal{C}$ is closed, then $\mathrm{Cl}_{\tau}(A) \subseteq \mathcal{C}$. But $\mathrm{Cl}_{\tau}(A)=X$, and hence $\mathcal{C}=X$. But then, since quotient maps are surjective, we have that $q[\mathcal{C}]=q[X]=X / R$. But $q[\mathcal{C}] \subseteq \tilde{\mathcal{C}}$, by definition of $\mathcal{C}$ and $\tilde{\mathcal{C}}$, and hence $\tilde{\mathcal{C}}=X / R$. That is, if $\tilde{\mathcal{C}}$ is a closed subset of $X / R$ such that $B \subseteq \tilde{\mathcal{C}}$, then $\tilde{\mathcal{C}}=X / R$. Hence $\mathrm{Cl}_{\tau_{X / R}}(B)=X / R$, so $B$ is a countable dense subset and ( $X / R, \tau_{X / R}$ ) is separable.


Figure 1: The Bug-Eyed Line Construction

## Problem 2 (Embeddings)

The bug-eyed line is a quotient space of $X=\mathbb{R} \times\{0,1\}$ where $\mathbb{R}$ has the standard Euclidean topology and $\{0,1\}$ has the discrete topology. $X$ is given the product topology. We identity $(x, 0)$ with $(x, 1)$ for all $x \neq 0$ and then take the quotient of $X$ under this relation. This idea is shown in Fig. 1

- (6 Points) Prove that it is impossible to embed the bug-eyed line into $\mathbb{R}^{n}$ for all $n \in \mathbb{N}$.

Solution. This space is not Hausdorff. For let $q: X \rightarrow X / R$ be the canonical quotient map, and define $0^{\prime}=q((0,0))$ and $0^{\prime \prime}=q((0,1))$. These are the two origins in the buy-eyed line. Let $\mathcal{U} \subseteq X / R$ be an open set about $0^{\prime}$ and $\mathcal{V} \subseteq X / R$ be an open set about $0^{\prime \prime}$. Then $q^{-1}[\mathcal{U}], q^{-1}[\mathcal{V}] \subseteq X$ are open subsets of $X$ since $q$ is continuous. Moreover, $(0,0)$ is an element of $q^{-1}[\mathcal{U}]$ and $(0,1)$ is an element of $q^{-1}[\mathcal{V}]$. But the topology on $X$ is the product topology from $\mathbb{R}$ and $\mathbb{Z}_{2}=\{0,1\}$, the latter given the discrete topology. So an open subset about $(0,0)$ must contain all points between $(-\varepsilon, 0)$ and $(\varepsilon, 0)$. A similar statement can be made for $(0,1)$. Since $(x, 0)$ and $(x, 1)$ are identified by the relation for all $x \neq 0$, projecting these open intervals down to the quotient space shows that $\mathcal{U}$ and $\mathcal{V}$ must overlap. Hence $\left(X / R, \tau_{X / R}\right)$ is not Hausdorff. But if $f: X / R \rightarrow \mathbb{R}^{n}$ is an embedding, then $X / R$ is homeomorphic to the subspace $f[X / R] \subseteq \mathbb{R}^{n}$. But $\mathbb{R}^{n}$ is Hausdorff, so all of its subspaces are Hausdorff. So no such embedding could possibly exist.


Figure 2: Open Sets in the Bug-Eyed Line

Fig. 2 provides a visual of the description of open sets given in solution. Any open set containing the first origin must overlap with any open set containing the second. We imagine the bug-eyed line as the real line with an extra origin that is almost indistinguishable from the first. This space is Fréchet, however. The two origins are indeed still closed.

## Problem 3 (Quotients)

Let $X=\mathbb{R} / \mathbb{Q}$, equipped with the quotient topology where $\mathbb{R}$ carries the usual Euclidean topology.

- (4 Points) Is this space Hausdorff? Is it Fréchet?

Solution. This space is not Hausdorff. A subset of $\mathbb{R} / \mathbb{Q}$ is open if and only if the pre-image is open. This is one of the defining characteristics of the quotient map $q$. Let $[x],[y] \in \mathbb{R} / \mathbb{Q}$. There are three possibilities. Both $x$ and $y$ are irrational, only one of $x$ and $y$ are irrational, and both $x$ and $y$ are rational. If $x$ and $y$ are rational, then $[x]=[y]$, so we may discard this possibility. Suppose both $x$ and $y$ are irrational. Let $\mathcal{U}, \mathcal{V}$ be open sets about $[x]$ and $[y]$, respectively. Then $q^{-1}[\mathcal{U}]$ and $q^{-1}[\mathcal{V}]$ are open sets containing $x$ and $y$, respectively. But open sets in $\mathbb{R}$ are described by the metric. So there is some $\varepsilon_{x}>0$ and some $\varepsilon_{y}>0$ such that $\left(x-\varepsilon_{x}, x+\varepsilon_{x}\right) \subseteq q^{-1}[\mathcal{U}]$ and $\left(y-\varepsilon_{y}, y+\varepsilon_{y}\right) \subseteq q^{-1}[\mathcal{V}]$. But there must be a rational number between $x+\varepsilon_{x}$ and a rational number between $y+\varepsilon_{y}$. But all rationals are identified together by the equivalence relation, meaning these rationals map to the same point under $q$. Hence $\mathcal{U}$ and $\mathcal{V}$ must overlap, so $[x]$ and $[y]$ can not be separated by open sets.

If $x$ is irrational and $y$ is rational, the argument is almost identical. Any open set about $[x]$ must contain $[y]$ by the previous argument, and hence $[x]$ and $[y]$ can not be separated by open sets either. So $\mathbb{R} / \mathbb{Q}$ is not Hausdorff.

The space is also not Fréchet. Given irrational numbers $x$ and $y$ we can indeed find open sets for $[x]$ and $[y]$ satisfying the Fréchet condition. Namely, set $\mathcal{U}=\mathbb{R} \backslash\{y\}$ and $\mathcal{V}=\mathbb{R} \backslash\{x\}$. These sets are open in $\mathbb{R}$ and moreover they are saturated with respect to $q$. Hence $q[\mathcal{U}]$ and $q[\mathcal{V}]$ are open sets with $[x] \in q[\mathcal{U}]$, $[x] \notin q[\mathcal{V}]$, and $[y] \in q[\mathcal{V}]$ and $[y] \notin q[\mathcal{U}]$. The problem arises when we consider $x$ irrational and $y$ rational. When exploring the Hausdorff property we saw that any open set containing $[x]$ must also contain $[y]$, and hence the Fréchet condition cannot be satisfied. $\mathbb{R} / \mathbb{Q}$ is neither Hausdorff nor Fréchet.

## Problem 4 (Products)

Consider topological spaces $\left(X, \tau_{X}\right),\left(Y, \tau_{Y}\right)$, and $\left(Z, \tau_{Z}\right)$. Equip $X \times Y$ with the product topology $\tau_{X \times Y}$.

- (6 Points) Prove that a function $f: Z \rightarrow X \times Y$ is continuous if and only if the component functions $\operatorname{proj}_{X} \circ f: Z \rightarrow X$ and $\operatorname{proj}_{Y} \circ f: Z \rightarrow Y$ are continuous.

Solution. One direction is easier than the other. If $f$ is continuous, then since projections are continuous, $\operatorname{proj}_{X} \circ f$ and $\operatorname{proj}_{Y} \circ f$ are the compositions of continuous functions, which are therefore continuous. That is, if $f$ is continuous, then so are the component functions. In the other direction, suppose the component functions are continuous. Let $z \in Z$ and $\mathcal{W} \in \tau_{X \times Y}$ be any open set containing $f(z)$. Since $\tau_{X \times Y}$ has as a basis the set of all open rectangles, there must be some open sets $\mathcal{U} \in \tau_{X}$ and $\mathcal{V} \in \tau_{Y}$ such that $f(z) \in \mathcal{U} \times \mathcal{V}$ and $\mathcal{U} \times \mathcal{V} \subseteq \mathcal{W}$. But $\operatorname{proj}_{X} \circ f$ is continuous, and $\left(\operatorname{proj}_{X} \circ f\right)(z) \in \mathcal{U}$, so there is an open set $\mathcal{E}_{X}$ such that $z \in \mathcal{E}_{X}$ and $\left(\operatorname{proj}_{X} \circ f\right)\left[\mathcal{E}_{X}\right] \subseteq \mathcal{U}$. Similarly there exists a set $\mathcal{E}_{Y}$ for $\operatorname{proj}_{Y} \circ f$. Let $\mathcal{E}=\mathcal{E}_{X} \cap \mathcal{E}_{Y}$. Then $\mathcal{E}$ is open, being the intersection of two open sets, and $z \in \mathcal{E}$. Moreover, $f[\mathcal{E}] \subseteq \mathcal{U} \times \mathcal{V}$. For let $(x, y) \in f[\mathcal{E}]$. Then $\operatorname{proj}_{X}((x, y))=x$ and hence $x \in \mathcal{U}$, and $\operatorname{proj}_{Y}((x, y))=y$ and so $y \in \mathcal{V}$. But then $(x, y) \in \mathcal{U} \times \mathcal{V}$, meaning $f[\mathcal{E}] \subseteq \mathcal{U} \times \mathcal{V}$. But $\mathcal{U} \times \mathcal{V} \subseteq \mathcal{W}$, and hence $f[\mathcal{E}] \subseteq \mathcal{W}$. That is, for all $z \in Z$ and for every open set $\mathcal{W}$ containing $f(z)$ there is an open set $\mathcal{E} \subseteq Z$ such that $z \in \mathcal{E}$ and $f[\mathcal{E}] \subseteq \mathcal{W}$. So $f$ is continuous.

