
Point-Set Topology: Homework 3

Summer 2023

Problem 1 (Separability)

A separable topological space is a space (X, τ) such that there is a countable
subset A ⊆ X such that Clτ (A) = X. A metric space is separable if and only if
it is second-countable. This feature is special to metric spaces. Take R with the
standard topology, and equip R/Z with the quotient topology. Intuitively this
is infinite many circles all touching at 0. It is not first-countable, and hence not
second-countable, even though R is. It is still separable.

� (6 Points) Let (X, τ) be a separable topological space. Let R be any
equivalence relation on X. Prove that (X/R, τX/R) is separable. That is,
separability is a topological property preserved by quotients.

Solution. Since (X, τ) is separable, there is a countable dense subset A. Let
q : X → X/R be the quotient map, q(x) = [x] where [x] is the equivalence
class of x, and let B = q[A]. Since B is the image of a countable set, it too
is countable. We must prove ClτX/R

(B) = X/R. Let C̃ ⊆ X/R be a closed
set containing B. But q is continuous, and so the pre-image of closed sets is
closed, meaning q−1[C̃] is closed. Let C = q−1[C̃]. Then C is a closed set that
contains A since q[A] = B. But if A ⊆ C and C is closed, then Clτ (A) ⊆ C. But
Clτ (A) = X, and hence C = X. But then, since quotient maps are surjective,
we have that q[C] = q[X] = X/R. But q[C] ⊆ C̃, by definition of C and C̃, and
hence C̃ = X/R. That is, if C̃ is a closed subset of X/R such that B ⊆ C̃,
then C̃ = X/R. Hence ClτX/R

(B) = X/R, so B is a countable dense subset and
(X/R, τX/R) is separable.

1



Figure 1: The Bug-Eyed Line Construction

Problem 2 (Embeddings)

The bug-eyed line is a quotient space of X = R × { 0, 1 } where R has the
standard Euclidean topology and { 0, 1 } has the discrete topology. X is given
the product topology. We identity (x, 0) with (x, 1) for all x 6= 0 and then take
the quotient of X under this relation. This idea is shown in Fig. 1

� (6 Points) Prove that it is impossible to embed the bug-eyed line into Rn
for all n ∈ N.

Solution. This space is not Hausdorff. For let q : X → X/R be the canonical
quotient map, and define 0′ = q((0, 0)) and 0′′ = q((0, 1)). These are the
two origins in the buy-eyed line. Let U ⊆ X/R be an open set about 0′ and
V ⊆ X/R be an open set about 0′′. Then q−1[U ], q−1[V] ⊆ X are open subsets
of X since q is continuous. Moreover, (0, 0) is an element of q−1[U ] and (0, 1)
is an element of q−1[V]. But the topology on X is the product topology from
R and Z2 = { 0, 1 }, the latter given the discrete topology. So an open subset
about (0, 0) must contain all points between (−ε, 0) and (ε, 0). A similar
statement can be made for (0, 1). Since (x, 0) and (x, 1) are identified by the
relation for all x 6= 0, projecting these open intervals down to the quotient space
shows that U and V must overlap. Hence (X/R, τX/R) is not Hausdorff. But
if f : X/R→ Rn is an embedding, then X/R is homeomorphic to the subspace
f [X/R] ⊆ Rn. But Rn is Hausdorff, so all of its subspaces are Hausdorff. So no
such embedding could possibly exist.
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Figure 2: Open Sets in the Bug-Eyed Line

Fig. 2 provides a visual of the description of open sets given in solution. Any
open set containing the first origin must overlap with any open set containing
the second. We imagine the bug-eyed line as the real line with an extra origin
that is almost indistinguishable from the first. This space is Fréchet, however.
The two origins are indeed still closed.
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Problem 3 (Quotients)

Let X = R/Q, equipped with the quotient topology where R carries the usual
Euclidean topology.

� (4 Points) Is this space Hausdorff? Is it Fréchet?

Solution. This space is not Hausdorff. A subset of R/Q is open if and only if the
pre-image is open. This is one of the defining characteristics of the quotient map
q. Let [x], [y] ∈ R/Q. There are three possibilities. Both x and y are irrational,
only one of x and y are irrational, and both x and y are rational. If x and y
are rational, then [x] = [y], so we may discard this possibility. Suppose both x
and y are irrational. Let U ,V be open sets about [x] and [y], respectively. Then
q−1[U ] and q−1[V] are open sets containing x and y, respectively. But open sets
in R are described by the metric. So there is some εx > 0 and some εy > 0 such
that (x− εx, x+ εx) ⊆ q−1[U ] and (y− εy, y+ εy) ⊆ q−1[V]. But there must be
a rational number between x + εx and a rational number between y + εy. But
all rationals are identified together by the equivalence relation, meaning these
rationals map to the same point under q. Hence U and V must overlap, so [x]
and [y] can not be separated by open sets.

If x is irrational and y is rational, the argument is almost identical. Any open
set about [x] must contain [y] by the previous argument, and hence [x] and [y]
can not be separated by open sets either. So R/Q is not Hausdorff.

The space is also not Fréchet. Given irrational numbers x and y we can indeed
find open sets for [x] and [y] satisfying the Fréchet condition. Namely, set
U = R \ { y } and V = R \ {x }. These sets are open in R and moreover they are
saturated with respect to q. Hence q[U ] and q[V] are open sets with [x] ∈ q[U ],
[x] /∈ q[V], and [y] ∈ q[V] and [y] /∈ q[U ]. The problem arises when we consider
x irrational and y rational. When exploring the Hausdorff property we saw
that any open set containing [x] must also contain [y], and hence the Fréchet
condition cannot be satisfied. R/Q is neither Hausdorff nor Fréchet.
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Problem 4 (Products)

Consider topological spaces (X, τX), (Y, τY ), and (Z, τZ). Equip X × Y with
the product topology τX×Y .

� (6 Points) Prove that a function f : Z → X × Y is continuous if and only
if the component functions projX ◦ f : Z → X and projY ◦ f : Z → Y are
continuous.

Solution. One direction is easier than the other. If f is continuous, then since
projections are continuous, projX ◦ f and projY ◦ f are the compositions of
continuous functions, which are therefore continuous. That is, if f is continu-
ous, then so are the component functions. In the other direction, suppose the
component functions are continuous. Let z ∈ Z and W ∈ τX×Y be any open
set containing f(z). Since τX×Y has as a basis the set of all open rectangles,
there must be some open sets U ∈ τX and V ∈ τY such that f(z) ∈ U × V and
U ×V ⊆ W. But projX ◦ f is continuous, and (projX ◦ f)(z) ∈ U , so there is an
open set EX such that z ∈ EX and (projX ◦ f)[EX ] ⊆ U . Similarly there exists a
set EY for projY ◦ f . Let E = EX ∩ EY . Then E is open, being the intersection
of two open sets, and z ∈ E . Moreover, f [E ] ⊆ U × V. For let (x, y) ∈ f [E ].
Then projX

(
(x, y)

)
= x and hence x ∈ U , and projY

(
(x, y)

)
= y and so y ∈ V.

But then (x, y) ∈ U × V, meaning f [E ] ⊆ U × V. But U × V ⊆ W, and hence
f [E ] ⊆ W. That is, for all z ∈ Z and for every open setW containing f(z) there
is an open set E ⊆ Z such that z ∈ E and f [E ] ⊆ W. So f is continuous.
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