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1 Motivation

Topology is the study of continuous deformations. Continuously changing a
space without tearing or cutting. Ask yourself if you think it is possible to
continuously morph a square into a circle. See Fig. 1 for a demonstration. Now
ask yourself if it is possible to change a sphere into a torus (Fig. 2). The first
problems in topology stem from graph theory, such as the bridges of Königsberg
problem. You are asked to traverse the seven bridges in the city of Königsberg,
crossing each bridge exactly once (Fig. 3). Is this possible?

We can simplify the problem by treating plots of land as single dots, and bridges
as curves and line segments, resulting in the graph shown in Fig. 4. The problem
asks you to traverse each edge of this graph once and only once. This turns out
to be impossible. Turning this into a graph problem is the start of topology.
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Figure 1: Changing a Square to a Circle
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Figure 2: A Torus and a Sphere

Figure 3: The Seven Bridges of Königsberg

We may move the edges and vertices of the graph around without altering the
question. If we cut an edge or remove a vertex, we will change the problem.
That is, we may change the graph continuously without affecting anything.

The next discovery that motivates topology is the Euler characteristic. A poly-
hedron is a collection of vertices, edges, and faces. A convex polyhedron has
the property that if it has V vertices, E edges, and F faces, then:

V − E + F = 2 (1)

The convexity is not actually needed. The formula V − E + F = 2 is true as
long as the polyhedron can be continuously deformed into a sphere. If we have
a polyhedron that can be continuously deformed into a torus, we get a different
number. Examining Fig. 5.2 we count:

V − E + F = 0 (2)

This alternating sum is called the Euler characteristic of the polyhedron and it
is preserved by continuous deformations.
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Figure 4: The Graph of the Seven Bridges of Königsberg

5.1: A Tetrahedron 5.2: A Polyhedral Torus

Figure 5: Examples of Polyhedra

2 Sets

Sets are the main object dealt with in most branches of mathematics.

Definition 2.1 (Set) A set is a collection of objects called elements. �

Sets are often denoted using capital Latin letters such as A, B, C, X, Y , and
Z. Elements of sets are usually denoted by lower case Latin letters like a, b, c,
x, y, and z. This need not always be the case, but is fairly common.

Example 2.1 Finite sets are denoted with braces and commas separating the
elements. For example, if A is the set consisting of the elements 1, 2, and 3, we
write:

A = { 1, 2, 3 } (3)

Order does not matter for sets, we can also write:

A = { 3, 1, 2 } (4)

And repetition is also irrelevant:

A = { 1, 1, 2, 3 } (5)

All of these mean the set A. �
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Notation 2.1 (Containment) If A is a set and a is an element of A, we write
a ∈ A. If a is not an element of A, we write a /∈ A. �

The expression a ∈ A reads aloud as a is in A or a is an element of A. Similarly,
a /∈ A reads aloud as a is not in A.

Example 2.2 Using A = { 1, 2, 3 }, we have that 1 ∈ A, 2 ∈ A, and 3 ∈ A
since 1, 2, and 3 are elements of the set A. However, 4 /∈ A since 4 is not an
element of A. �

Sets are usually constructed with set-builder notation. If we have some set X
that we know exists, we can take a sentence P and apply it to all elements
x ∈ X. This is expressed

A = {x ∈ X | P (x) } (6)

which reads A is the set of all x in X such that P (x) is true.

Example 2.3 Let N be the set of natural numbers

N = { 0, 1, 2, 3, 4, . . . } (7)

Let P (n) be the sentence n is even. Consider the set

A = {n ∈ N | P (n) } (8)

This is the set of all natural numbers that are even. We can write this explicitly
as follows:

A = { 0, 2, 4, . . . } (9)

�

Be careful of abusing set-builder notation. If you have some sentence P (x) you
can not write the following:

A = {x | P (x) } (10)

That is, you may not consider the set of all x such that P (x) is true. You
may only apply your sentence to some set X you already know exists, and then
collect all x ∈ X satisfying your sentence P . Failure to do this results in Russell’s
paradox. Consider the sentence P (x) = x is a set. Then A = {x | P (x) } is the
set of all sets. Is A an element of itself? If allowed, it is possible to construct a
statement that is both true and false, something that should be avoided.

Definition 2.2 (Subset) A subset of a set B is a set A such that for all a ∈ A
it is true that a ∈ B. We write A ⊆ B. �

Subsets can be described by blobs in the plane. See Fig. 6.

The axioms of set theory provide the existence of four operations on sets: union,
intersection, set difference, and symmetric difference.
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Figure 6: Diagram for Subsets

A B

A ∪ B

7.1: Venn Diagram for Union

A B

A ∩ B

7.2: Venn Diagram for Intersection

Definition 2.3 (Union of Two Sets) The union of two sets A and B is the
set A ∪B defined by:

A ∪B = {x | x ∈ A or x ∈ B } (11)

That is, the set of all elements in A, or in B, or in both. �

The union of two sets can be visualized with a Venn diagram (Fig. 7.1). It is
worth detailing what the word or means. In English there are two uses of the
word or, the inclusive or and the exclusive or. Given two sentences P and Q,
the exclusive or means P is true or Q is true, but not both. The inclusive or
means P is true, Q is true, or both are true. In mathematics we always use the
inclusive or. The exclusive or is denoted xor. It is a useful concept in computer
science and analysis of algorithms, but we will not need it in topology.

Example 2.4 Let A = { 1, 2, 3 } and B = { 3, 4, 5 }. The union is then:

A ∪B = { 1, 2, 3, 4, 5 } (12)

Remember, sets have no notion of repetition, so including 3 twice would be
redundant. �
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Definition 2.4 (Intersection of Two Sets) The intersection of two sets A
and B is the set A ∩B defined by:

A ∩B = {x | x ∈ A and x ∈ B } (13)

That is, the set of all elements that are in both A and B simultaneously. �

The word and is easier to understand since its mathematical use matches the
grammatical one. Given two sentences P and Q, the statement P and Q means
both P is true and Q is true, and both are true simultaneously.

Example 2.5 Let A = { 1, 2, 3 } and B = { 3, 4, 5 }. The intersection is then:

A ∩B = { 3 } (14)

The only element A and B have in common is 3. �

Intersection can also be represented by a Venn diagram (See Fig. 7.2). What if
A and B have no sets in common? Let’s consider the following example.

Example 2.6 Let A = { 1, 2, 3 } and B = { 4, 5, 6 }. The intersection A∩B is
the set of elements in both A and B. But A and B have no elements in common,
so the intersection is empty. This is the empty set, denoted ∅, and occasionally
written as ∅ = { }. We have A ∩B = ∅. �

The axioms of set theory provide the existence of the empty set, but we’ll just
take it as a definition and move on.

Definition 2.5 (The Empty Set) The empty set is the unique set ∅ that
contains no elements. That is, for all x, it is true that x /∈ ∅. We may write
∅ = { } for convenience. �

Definition 2.6 (Disjoint Sets) Disjoint sets are sets A and B that have no
elements in common. That is, sets A and B such that A ∩B = ∅. �

The sets in Ex. 2.6 are disjoint.

The next operation is set difference. It is somewhat like subtraction for sets.

Definition 2.7 (Set Difference) The set difference of a set A from a set B is
the set B \A defined by:

B \A = {x ∈ B | x /∈ A } (15)

That is, the set of all elements in B that are not in A. �

The Venn diagram for set difference is given in Fig. 8.1.

Example 2.7 Let A = { 1, 2, 3 } and B = { 3, 4, 5 }. The set difference B \A
is:

B \A = { 4, 5 } (16)

That is, the only element common to A and B is 3, so B \A is everything in B
except for 3. �
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B \A

8.1: Venn Diagram for Set Difference

A B

A⊖B

8.2: Venn Diagram for Symmetric Difference

The last operation is symmetric difference and it is defined in terms of the other
three. We will not use it, but for completeness the Venn diagram is shown.

Definition 2.8 (Symmetric Difference) The symmetric difference of two
sets A and B is the set A	B defined by:

A	B = (A ∪B) \ (A ∩B) (17)

That is, the set of all elements in either A or B, but not both. �

Symmetric difference is the set equivalent of the exclusive or. The Venn diagram
is shown in Fig. 8.2.

There are several theorems relating union, intersection, and set difference. We
will use them often.

A ∪B = B ∪A (Commutativity of Unions)

A ∩B = B ∩A (Commutativity of Intersections)

A ∪ (B ∪ C) = (A ∪B) ∪ C (Associativity of Unions)

A ∩ (B ∩ C) = (A ∩B) ∩ C (Associativity of Intersections)

A ∪ ∅ = A (Identity Law of Unions)

A ⊆ B ⇒ A ∩B = A (Identity Law of Intersections)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (Distributive Law of Unions)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (Distributive Law of Intersections)

X \ (A ∪B) = (X \A) ∩ (X \B) (De Morgan’s Law of Unions)

X \ (A ∩B) = (X \A) ∪ (X \B) (De Morgan’s Law of Intersections)

Lastly, a brief discussion on implication. This is the use of the expression if-then
in mathematics. Consider the sentence

if I am late to work, then I will be fired

This contains two sentences. P (x) is x is late for work and Q(x) is x will be fired.
There are four possibilities for the sentence if P, then Q. Let’s work through
them.
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P Q P ⇒ Q
False False True
False True True
True False False
True True True

Table 1: Truth Table for Implication

I was not late to work, and I was not fired. Is the statement if I am late to
work, then I will be fired true or false? The situation that triggers the firing
didn’t happen so we certainly cannot conclude that the statement is false. We
thus say that in this scenario the sentence is true.

I was not late to work, and I was fired. Is the statement false? Of course not,
there are plenty of reasons for being fired. Perhaps I have a sailor’s tongue or
sloppy handwriting. In this situation we conclude that the sentence is true.

I was late to work, and I was not fired. In this event, my boss is very nice,
however the sentence is false. I was late to work and yet I was not fired.

I was late to work, and I was fired. This is perhaps the easiest to grasp since
it’s the scenario one intuitively thinks about when hearing if-then sentences. In
this case the sentence is true.

The technical name for if-then is implication. The symbol for this is a large
arrow ⇒. The truth table for implication is given in Tab. 1.
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