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1 Theorems on Compactness

Theorem 1.1. If (X, d) is a metric space and a : N → R is a convergent
sequence, then a is a Cauchy sequence.

Proof. Since a : N → X converges, there is an x ∈ X such that an → x. Let
ε > 0. Since an → x there is an N ∈ N such that n > N implies d(x, an) < ε

2 .
But then n,m > N implies:

d(am, an) ≤ d(x, am) + d(x, an) <
ε

2
+

ε

2
= ε (1)

and therefore a is a Cauchy sequence.

Without completeness, a metric space (X, d) can have non-convergent Cauchy
sequences. But given a Cauchy sequence with a convergent subsequence, the
entire sequence must then convergent. The intuition is that a Cauchy sequence
is a sequence where all of the points start to get really close together as the
indices increase. Since there is a convergent subsequence, there is some point
x ∈ X where some of the points in the sequence start to get really close to. But
since all of the points get close together at higher and higher indices, all of the
points must also get closer to x, and hence the entire sequence converges to x.
Let’s prove this.

Theorem 1.2. If (X, d) is a metric space, if a : N→ X is a Cauchy sequence,
and if ak is a convergent subsequence, then a is a convergent sequence.

Proof. Since ak is a convergent sequence, there is an x ∈ X such that akn
→ x.

Let ε > 0. Since akn
→ x, there is an N0 ∈ N such that n > N0 implies

d(x, akn) < ε
2 . Since a is a Cauchy sequence there is an N1 ∈ N such that

n,m > N1 implies d(am, an) < ε
2 . Let N = max(kN0 , N1). Then since k is

strictly increasing, m > N implies km > N0 and km > N1. But then for all
n,m > N :

d(x, an) ≤ d(an, akm) + d(x, akm) <
ε

2
+

ε

2
= ε (2)

and therefore an → x. That is, a is a convergent sequence.
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Completeness and closedness are related for metric space. Given a complete
metric space (X, d), the only complete subspaces are the closed ones. In partic-
ular, since (R, | · |), the standard metric on the real line, is complete, we see that
the open unit interval is not complete. The sequence a : N→ (0, 1) defined by
an = 1

n+1 is a Cauchy sequence, but it does not converge. We want to say it
“converges” to zero, but zero is not an element of this subspace.

Theorem 1.3. If (X, d) is a complete metric space, and if A ⊆ X, then (A, dA)
is a complete metric space if and only if A is closed.

Proof. Suppose (A, dA) is a complete metric space and let a : N → A be a
sequence that converges in X. But convergent sequences are Cauchy sequences,
and (A, dA) is complete, and therefore Cauchy sequences converge. But then
the limit of a is contained in A, and therefore A is closed. Now, suppose A ⊆ X
is closed. Let a : N→ A be a Cauchy sequence. Then, since A ⊆ X, a : N→ X
is a Cauchy sequence in X. But (X, d) is complete, and therefore a converges.
That is, there is an x ∈ X such that an → x. But A is closed and therefore
contains all of its limit points, so x ∈ A. Hence Cauchy sequences in A converge
in A, and therefore (A, dA) is complete.

This theorem is the baby version of the same idea for compactness.

Theorem 1.4. If (X, d) is a compact metric space, and A ⊆ X, then (A, dA)
is compact if and only if A is closed.

Proof. Suppose (A, dA) is compact and x ∈ X a limit point of A. Then there
is a sequence a : N → A such that an converges to x in X. But (A, dA) is
compact, so there is a convergent subsequence ak with limit in A. But limits
are unique, so akn

→ x, and therefore x ∈ A. Now suppose A is closed. Let
a : N → A be a sequence. Then, since A ⊆ X, a : N → X is a sequence in
X. But (X, d) is compact, so there is a convergent subsequence ak with limit
x ∈ X. But A is closed and hence contains all of its limit points, and therefore
x ∈ A. But then ak is a convergent subsequence of a in A. Therefore, (A, dA)
is compact.

And lastly, it should be noted that compactness is far stronger than complete-
ness. Let’s prove this.

Theorem 1.5. If (X, d) is a compact metric space, then (X, d) is complete.

Proof. Let a : N → X be a Cauchy sequence. Since (X, d) is compact, there
is a convergent subsequence ak. But a Cauchy sequence with a convergent
subsequence is convergent, and therefore a is convergent. Thus, (X, d) is com-
plete.

Theorem 1.6 (Heine-Borel Theorem). If A ⊆ RN and d : RN × RN → R
is the standard Euclidean metric, d(x, y) = ||x− y||2, then (A, dA) is compact
if and only if A is closed and bounded.
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Proof. Suppose (A, dA) is compact. We have proved that compact subspaces
of any metric space are closed, so in particular A is a closed subset of RN .
Suppose A is not bounded. Then for all n ∈ N there is an an ∈ A with
||an||2 > n, otherwise A is bounded. The sequence a : N → A can be chosen
so that ||am||2 < ||an||2 whenever m < n, while diverging off to infinity, and
hence contains no convergent subsequences. This contradicts the assumption
that (A, dA) is compact. Hence, A is bounded. Now, suppose (A, dA) is closed
and bounded. Let x : N→ A be any sequence. Denote xn ∈ A via the tuple:

xn =
(
x0
n, x

1
n, . . . , x

N−1
n

)
(3)

The sequence x0 : N→ R defined by setting x0
n equal to the zeroth component

of xn is bounded since A is bounded. By the Bolzano-Weierstrass theorem there
is a convergent subsequence x0

k. That is, there is some real number r0 ∈ R such
that x0

kn
→ r0. But then x1

k is a (not necessarily convergent) subsequence of the
sequence x1 : N→ R, the sequence defined by setting x1

n equal to the first com-
ponent of xn. But then x1

k is a bounded sequence of real numbers and hence by
the Bolzano-Weierstrass theorem, there is a convergent subsequence x1

kk′
. That

is, there is some r1 ∈ R such that x1
kk′n
→ r1. But x0

kk′
is a subsequence of x0

k,

and hence x0
kk′

is a subsequence of a convergent subsequence. But subsequences
of convergent sequences converge and they converge to the same limit. That
is, we now have that x0

kk′
and x1

kk′
are convergent sequences converging to r0

and r1, respectively. Continuing inductively, we obtain subseqence k′′, k′′′, up
to k(N−1) such that xm

k...k(N−1) is a convergent sequence for all m ∈ ZN where

k . . . k(N−1) denotes the sequence obtain by repeated composition:

k . . . kN−1(n) = k

(
k′
(
· · ·

(
k(N−1)(n)

))
· · ·

)
(4)

But then xk...k(N−1) is a sequence in A that converges to the y ∈ RN defined by
y = (r0, r1, . . . , rN−1). But A ⊆ RN is closed and hence contains all of its limit
points, so y ∈ A. That is, x has a convergent subsequence. Therefore (A, dA)
is compact.

Do not attempt to apply this result to general metric spaces. The Heine-Borel
theorem is specific to Euclidean spaces with the Euclidean metric (or topolog-
ically equivalent metrics such as the Manhattan and maximum metrics). The
discrete metric on any set is bounded. In particular, the discrete metric on R
is bounded. Moreover, since every subset of a discrete metric space is open,
every subset of a discrete metric space is closed (being the complement of an
open set). Any infinite subset of R with the discrete metric is not compact. In
the discrete metric space (X, d) a sequence a : N → X converges to x ∈ X if
and only if there is some N ∈ N such that n > N implies an = x. That is,
convergent sequences are eventually constant. (To see this, apply the definition
of convergence to the positive number ε = 1

2 ). So given an infinite subset A of
R we can find an injective sequence a : N→ A. A is indeed closed and bounded,
but a has no convergent subsequence. So A is not compact with the discrete
metric.
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