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1 Order Topology and Orderable Spaces

A total order on a set X is a relation ≤ that is reflexive (a ≤ a), anti-symmetric
(a ≤ b and b ≤ a implies a = b), transitive (a ≤ b and b ≤ c implies a ≤ c), and
total (either a ≤ b or b ≤ a for all a and b). This induces another relation <
on X defined by a < b if and only if a ≤ b and a 6= b. The primary example is
less than or equal to on R, and the induced relation is less than. Given a total
order on a set X it is possible to use this to induce a topology τ< on X that
has some very nice properties. Many topological properties of the real line stem
from the fact that the standard topology τR and the order topology τ< are the
same (where < is the usual less than relation). First, some notation. Given a
totally ordered set (X, <), and a, b ∈ X, we write:

(a, b) = { c ∈ X | a < c and c < b } (1)

[a, b) = { c ∈ X | a ≤ c and c < b } (2)

(a, b] = { c ∈ X | a < c and c ≤ b } (3)

(−∞, a) = { c ∈ X | c < a } (4)

(a, ∞) = { c ∈ X | a < c } (5)

(−∞, a] = { c ∈ X | c ≤ a } (6)

[a, ∞) = { c ∈ X | a ≤ c } (7)

Note, we’re not saying ∞ is a thing, or an element of X, this is just notation.
Just like how (0, ∞) is the set of all positive numbers in R, even though ∞ is
not a number. We use this to define the order topology.

Definition 1.1 (Order Topology) The order topology on a totally ordered
set (X, <) is the topology τ< generated by the set B defined by:

B = { (a, b) | a, b ∈ X } ∪ { (a, ∞) | a ∈ X } ∪ { (−∞, a) | a ∈ X } (8)

That is, the set of all open intervals, open right-rays, and open left-rays. �

Example 1.1 The real line R with the standard Euclidean topology is also the
order topology induced by the less than relation. The Euclidean metric on R
yields a basis consisting of open intervals, which is precisely the order topologies
basis. �
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Definition 1.2 (Linearly Orderable Topological Space) A linearly orderable
topological space is a topological space (X, τ) such that there exists a total
order ≤ on X such that τ = τ< where τ< is the order topology. �

Like metrizable spaces, linearly orderable spaces are very nice, topologically.

Theorem 1.1. If (X, τ) is a linearly orderable topological space, then it is
Hausdorff.

Proof. Let a, b ∈ X, a 6= b, and let < be the order that induces τ . Since <
comes from a total order, either a < b or b < a. Suppose a < b (the proof
is symmetric). If there are no elements c ∈ X such that c ∈ (a, b), then let
U = (−∞, b) and V = (a, ∞). Then a ∈ U and b ∈ V since a < b. But also U
and V are open by the definition of the order topology. Moreover, U ∩ V = ∅
since there are no elements c such that a < c and c < b. If there is an element
c ∈ (a, b), let U = (−∞, c) and V = (c, ∞). Then a ∈ U , b ∈ V, and U and V
are open. Also U ∩ V = ∅ since you can’t have x < c and c < x simultaneously.
Hence, (X, τ) is Hausdorff.

Example 1.2 (Subspace Order) Given a totally ordered space (X, ≤) with
the order topology τ<, if we have A ⊆ X there are two topologies we can place
on A. First, the subspace topology from τ<. Second, ≤ restricts to a total order
on A, label this ≤A. We get a topology τ<A

via this subspace order. It does
not need to be the case that the subspace topology and the suborder topologies
are the same. Let A ⊆ R be defined by:

A =
{
x ∈ R | x = −1 or x =

1

n+ 1
for some n ∈ N

}
(9)

In the subspace topology −1 is isolated, the set {−1 } is open since:

A ∩
(
− 3

2
, −1

2

)
= {−1 } (10)

However, with the order induced from R, the subspace order does not have { 1 }
as an open set. Any open set containing −1 must also contain some 1

N , and
hence also contain every 1

n for all n > N . �

Example 1.3 (Lexicographic Plane) We can define a total order on R2.
Given (x0, y0) and (x1, y1), define (x0, y0) ≤ (x1, y1) if and only if either x0 ≤
x1 or, x0 = x1 and y0 ≤ y1. That is, first examine the x axis and compare these.
If they’re identical, move on to the y axis. This is also called the dictionary
order since it mimics how words are ordered in a dictionary. First, you compare
the first letter, then the second, and so on. This order does not give the
standard topology on R2, but it does give a good example to test ideas on.
The lexicographic plane often serves as a counterexample to many plausible
conjectures in topology. �
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2 The Long Line

This next example is a bit involved, but I hope you’ll stick around for the ride. It
is one of my favorite spaces. The axiom of choice tells us that the well-ordering
theorem is true. That is, every set X has a well-order ≤ which is a total order
such that every non-empty subset A ⊆ X has a smallest element. There is only
one well-order that I know of that arises naturally in mathematics, and that is
the natural order on N. Z, with the standard order, is not well-ordered since
Z has no least element (there is no negative infinity integer). What about R+,
all positive numbers? Also no, since there is no smallest positive real number.
How about R≥0, all positive numbers and zero? Also no. This set does have a
smallest number, it is zero, but R+ ⊆ R≥0 is a non-empty subset that has no
smallest element.

Well-orders are quite special. If (X, ≤) is well-ordered and x ∈ X, either x is
the largest element or there is a next largest element. The set [x, ∞) is such
that x is the smallest element. Removing it, considering (x, ∞), since x is not
the largest element (well-ordered sets don’t need to have a largest element, but
it is possible for such an element to exist) this subset is non-empty, so there
is a least element. This least element is the next largest element after x. So,
knowing this, how could one possibly order the real numbers in a way that gives
a well-order? Well, there’s a reason the well-ordering theorem is equivalent to
the axiom of choice, there’s no constructive way to do it. But pretend, for a
moment, that we accept the axiom of choice and the well-ordering theorem and
let ≺ be a well-order on R. Consider the sentence P (x) there are uncountably
many elements less than x. The reals are uncountable, so the set of real numbers
satisfying this relation is non-empty. So there is a least element α. This is the
first number that has uncountably many elements less than it. So every element
x ≺ α has only countably many elements less than x. This is bizarre. As noted,
there is always a +1 element, a next largest element, in a well-order. α shows
there does not need to be a next smallest, or a −1 before α.

Let ω be the set of all x ∈ R such that x ≺ α. ω is the first-uncountable
ordinal. With the order ≺ restricted to ω, ω also becomes well-ordered. Let
X = ω × [0, 1), where [0, 1) is the set of numbers between 0 and 1 with the
standard order, including 0 but excluding 1. We can equip ω × [0, 1) with
the lexicographic ordering, saying (x0, y0) ≤ (x1, y1) if and only if x0 � x1 or,
x0 = x1 and y0 ≤ y1. Equipping X with this order topology gives us the long
ray. The real ray R≥0 can be thought of as stringing along countably many
copies of [0, 1) in a row. The long ray does this with uncountably many copies
of [0, 1). The long ray is extremely long. The long line is obtained by taking
two copies of the long ray and gluing the endpoints together. Topologically, the
long line is very pleasant and a nightmare. It has many very nice topological
properties, but also serves as a great utensil for counterexamples to some very
plausible claims.
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3 Other Ordered Spaces

There are four more topologies a total order can give us.

Definition 3.1 (Lower Limit Topology) The lower limit topology on a to-
tally ordered set (X, ≤) is the topology τ generated by:

B = { [a, b) ⊆ X | a, b ∈ X } (11)

That is, the topology generated by half-open intervals closed on the left. �

Definition 3.2 (Upper Limit Topology) The upper limit topology on a
totally ordered set (X, ≤) is the topology τ generated by:

B = { (a, b] ⊆ X | a, b ∈ X } (12)

That is, the topology generated by half-open intervals closed on the right. �

Definition 3.3 (Right Ray Topology) The right ray topology on a totally
ordered set (X, ≤) is the topology τ generated by:

B = { (a, ∞) ⊆ X | a ∈ X } (13)

That is, the topology generated by rays that go off to the right. �

Definition 3.4 (Left Ray Topology) The left ray topology on a totally or-
dered set (X, ≤) is the topology τ generated by:

B = { (−∞, a) ⊆ X | a ∈ X } (14)

That is, the topology generated by rays that go off to the left. �

All of these give us plenty of examples of spaces, but we will be particularly
concerned with the lower limit topology on R. This space is so frequently
discussed in counterexamples that it is given a name (it was the first known
example of a normal spaces whose product is not normal. We’ll get to this next
lecture).

Definition 3.5 (The Sorgenfrey Line) The Sorgenfrey Line is the topological
space (R, τS) where τS is the lower limit topology induced by the standard order
≤ on R. �

Recall that two topologies on a set X do not need to be comparable. The
Sorgenfrey line, however, is comparable to the Euclidean line.

Theorem 3.1. If τR is the standard topology on R, and if τS is the Sorgenfrey
topology, then τR ⊆ τS.

Proof. It suffices to show that basis elements (a, b) in the standard topology
are open in the Sorgenfrey line. Let a < b and r = b−a

2 . Define Un to be:

Un = [a+
r

n+ 1
, b) (15)

Then Un ∈ τS since the Sorgenfrey topology is the lower limit topology on R.
But

⋃
n Un = (a, b), and the union of open sets is open, so (a, b) ∈ τS . Hence

τR ⊆ τS .
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Theorem 3.2. The Sorgenfrey line is Hausdorff.

Proof. Since (R, τR) is Hausdorff and τR ⊆ τS , (R, τS) is also Hausdorff.
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