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1 Urysohn’s Lemma and Metrization Theorem

We now come to one of the major theorems of point-set topology, the so-called
Urysohn Lemma. The theorem deals with normal spaces and is used in the
proof of one of the first metrization theorems.

Theorem 1.1 (Urysohn’s Lemma). If (X, τ) is a normal topological space,
and if C,D ⊆ X are disjoint closed subsets, then there is a continuous function
f : X → [0, 1], where [0, 1] has the subspace topology, such that f [C] = { 0 } and
f [D] = { 1 }. That is, C ⊆ f−1[{ 0 }] and D ⊆ f−1[{ 1 }].

Proof. Let A = Q ∩ [0, 1], the set of all rational numbers between 0 and 1,
inclusive. Since Q is countable, A is countable as well. Moreover, A is countably
infinite since it is not finite. Let a : N→ A be a bijection such that a0 = 0 and
a1 = 1. We will now define open sets Uan such that whenever am < an is true
we have:

Clτ (Uam) ⊆ Uan (1)

To start, define:
U1 = X \ D (2)

Since (X, τ) is normal and C ⊆ U1 there is an open set U0 such that C ⊆ U0 and
Clτ (U0) ⊆ U1. Define AN via:

AN = { an ∈ A | n ∈ ZN } (3)

That is, the first N rational numbers given by the bijection a : N → A. We
define Uan recursively. Suppose Uan ∈ τ has been defined for all n ∈ ZN such
that am < an implies Clτ (Uam) ⊆ Uan . Since AN+1 is a subset of Q, which is
totally ordered, it is ordered as well. But it is also finite, and since aN 6= 0 and
aN 6= 1, there are am, an ∈ AN+1 such that am < aN and aN < an where am is
the largest such value and an is the smallest such value. But by the recursive
definition Clτ (Uam) ⊆ Uan . But Clτ (Uam) is closed and Uan is open, so since
(X, τ) is normal there is UaN ∈ τ such that Clτ (Uam) ⊆ UaN and UaN ⊆ Uan .
By the principle of induction, such a set exists for all an. That is, we now have
for all rational numbers p, q ∈ A with p < q, the following:

Clτ (Up) ⊆ Uq (4)
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We extend this to all rationals as follows. Given p ∈ Q, p 6∈ A, define:

Up =

{
X p > 1

∅ p < 0
(5)

Define F : X → P(Q) via:

F (x) = { p ∈ Q | x ∈ Up } (6)

Define f : X → [0, 1] via:
f(x) = inf

(
F (x)

)
(7)

First, since A is bounded below by 0, f(x) is well-defined for all x ∈ X. We
now need to show that f is continuous, f [C] = { 0 }, and f [D] = { 1 }. First,
f [C] = { 0 }. If x ∈ C, then f(x) ∈ U0 by definition of U0 (see above). Hence
0 is the smallest value p ∈ Q such that f(x) ∈ Up, and hence f(x) = 0. Next,
f [D] = { 1 }. By definition, for all p ∈ Q with p ≤ 1, f(x) /∈ Up. Hence
f(x) = inf

(
(1, ∞)

)
= 1, so f [D] = { 1 }. Lastly, we must prove f is continuous.

This follows from the fact that A is a dense subset of [0, 1]. First, if p ∈ Q and
x ∈ Clτ (Up), then f(x) ≤ p. This is true since for all q ∈ Q with p < q we have
Up ⊆ Uq, and hence:

f(x) = inf
{
r ∈ Q | f(x) ∈ Ur

}
≤ p (8)

so f(x) ≤ p. Next, if x /∈ Up, then f(x) ≥ p. Since x /∈ Up, the only values
q ∈ Q with x ∈ Uq must be greater than p, and hence f(x) ≥ p. To conclude, a
function is continuous if and only if for all x ∈ X and all open V with f(x) ∈ V
there is an open U ⊆ X such that x ∈ U and f [U ] ⊆ V. Let x ∈ X and V ⊆ R
be an open set such that f(x) ∈ V. But V is open so there is an ε > 0 such that
|y− f(x)| < ε implies y ∈ V. Let c = f(x)− ε/2 and d = f(x) + ε/2. Let p and
q be rational numbers such that c < p < f(x) < q < d. Define U via:

U = Uq \ Clτ (Up) (9)

Then U is the difference of a closed set from an open set, and is hence open.
By the above observation, for all x0 ∈ U we have p ≤ f(x) ≤ f(q0), and hence
f [U ] ⊆ V. But also x ∈ U since p < f(x) < q. So f is continuous.

We get some use out of this immediately via Urysohn’s metrization theorem.

Theorem 1.2 (Urysohn’s Metrization Theorem). If (X, τ) is a regular
second countable Hausdorff topological space, then it is metrizable.

Proof. Since (X, τ) is regular and second countable, it is normal. But also since
(X, τ) is second countable there is a countable basis B for τ . Let U : N→ B be
a surjection so that we may list the elements as:

B = {U0, . . . , Un, . . . } (10)
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For all m,n ∈ N with Clτ (Um) ⊆ Un, by Urysohn’s lemma there is a continuous
function gm,n : X → [0, 1] such that:

gm,n[Clτ (Um)] = { 1 } and gm,n[X \ Un] = { 0 } (11)

The set of all such Um cover X since B is a basis and the set of all such functions
is countable since the elements are indexed by N × N. Relabel these functions
as fn : X → [0, 1] for all n ∈ N. Define the function F : X → R∞ via:

F (x) =
(
f0(x), . . . , fn(x), . . . ) (12)

Since R∞ has the product topology, and since each component function fn is
continuous, F is continuous. F is injective since given x, y ∈ X with x 6= y
one can find a basis element Un such that x ∈ Un and y /∈ Un, since (X, τ) is
Hausdorff, but then there is a function fn such that fn(x) = 1 and fn(y) = 0,
hence F (x) 6= F (y) since one of the components is different. Lastly, we must
show F is a homeomorphism between (X, τ) and (F [X], τR∞

F [X]
). Since F :

X → R∞ is injective, F : X → F [X] is bijective. To show F : X → F [X]
is a homeomorphism, since F is continuous, all that’s left to show is that F
is an open mapping. Let U ⊆ X be open, and given y ∈ f [U ], let x ∈ U be
such that F (x) = y. Since x ∈ X there is an n ∈ N such that fn(x) > 0
and fn[X \ U ] = { 0 }. Let V = proj−1n

[
(0, ∞)

]
. Then, since projections are

continuous and (0, ∞) is open, V ⊆ R∞ is open. But then f [X] ∩ V is open in
f [X] by definition of the subspace topology. But then y ∈ f [X] ∩ V, since:

projn(y) = projn
(
f(x)

)
= fn(x) (13)

and fn(x) > 0, so y ∈ V by definition of V. Lastly, f [X] ∩ V ⊆ f [U ]. For
given y ∈ f [X] ∩ V, since y ∈ f [X], there is some x ∈ X such that f(x) = y.
But if y ∈ V, then projn(y) > 0. But fn is the zero function outside of U ,
and hence y ∈ f [U ]. Since f [U ] can be written as the union of all such V,
f [U ] is open. That is, f is an open mapping with respect to the subspace
topology on f [X]. Therefore f : X → R∞ is a topological embedding, meaning
(X, τ) is homeomorphic to a subspace of a metrizable space, and is therefore
metrizable.

The last theorem to show is the Tietze extension theorem. It is logically equiv-
alent to Urysohn’s lemma.

Theorem 1.3 (Tietze Extension Theorem). If (X, τ) is a normal topolog-
ical space, if C ⊆ X is closed, and if f : C → R is continuous, then there is a
continuous function f̃ : X → R such that f̃ |A = f , and if f is bounded, then f̃
is bounded as well with the same bounds.

The proof is a bit lengthy, but I’d like to point out what this theorem does not
say. It does not say f : C → Y can be extended to all of X where (Y, τY ) is any
topological space. This is false. One need look no further than the Euclidean
plane. S1 is a closed subset of the Euclidean plane R2. The identity function
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f : S1 → S1 is continuous. However, there is no extension of this function to all
of R2. To map R2 to S1 while keeping S1 fixed means, intuitively, we’d need to
tear the plane at some point. This is not continuous. Imagine you had a lump
of dough in the shape of a disk. How would you push the inside of the lump of
dough to the outside to make a circle? You’d need to press your fingers through
the dough and make a hole. The Tietze extension theorem is only applicable
when the co-domain is R.
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