Point-Set Topology: Lecture 19

Ryan Maguire

August 8, 2023

1 Urysohn's Lemma and Metrization Theorem

We now come to one of the major theorems of point-set topology, the so-called *Urysohn Lemma*. The theorem deals with normal spaces and is used in the proof of one of the first metrization theorems.

Theorem 1.1 (Urysohn's Lemma). If (X, τ) is a normal topological space, and if $\mathcal{C}, \mathcal{D} \subseteq X$ are disjoint closed subsets, then there is a continuous function $f: X \to [0, 1]$, where [0, 1] has the subspace topology, such that $f[\mathcal{C}] = \{0\}$ and $f[\mathcal{D}] = \{1\}$. That is, $\mathcal{C} \subseteq f^{-1}[\{0\}]$ and $\mathcal{D} \subseteq f^{-1}[\{1\}]$.

Proof. Let $A = \mathbb{Q} \cap [0, 1]$, the set of all rational numbers between 0 and 1, inclusive. Since \mathbb{Q} is countable, A is countable as well. Moreover, A is countably infinite since it is not finite. Let $a : \mathbb{N} \to A$ be a bijection such that $a_0 = 0$ and $a_1 = 1$. We will now define open sets \mathcal{U}_{a_n} such that whenever $a_m < a_n$ is true we have:

$$\operatorname{Cl}_{\tau}(\mathcal{U}_{a_m}) \subseteq \mathcal{U}_{a_n}$$
 (1)

To start, define:

$$\mathcal{U}_1 = X \setminus \mathcal{D} \tag{2}$$

Since (X, τ) is normal and $\mathcal{C} \subseteq \mathcal{U}_1$ there is an open set \mathcal{U}_0 such that $\mathcal{C} \subseteq \mathcal{U}_0$ and $\operatorname{Cl}_{\tau}(\mathcal{U}_0) \subseteq \mathcal{U}_1$. Define \mathcal{A}_N via:

$$\mathcal{A}_N = \{ a_n \in A \mid n \in \mathbb{Z}_N \}$$
(3)

That is, the first N rational numbers given by the bijection $a : \mathbb{N} \to A$. We define \mathcal{U}_{a_n} recursively. Suppose $\mathcal{U}_{a_n} \in \tau$ has been defined for all $n \in \mathbb{Z}_N$ such that $a_m < a_n$ implies $\operatorname{Cl}_{\tau}(\mathcal{U}_{a_m}) \subseteq \mathcal{U}_{a_n}$. Since \mathcal{A}_{N+1} is a subset of \mathbb{Q} , which is totally ordered, it is ordered as well. But it is also finite, and since $a_N \neq 0$ and $a_N \neq 1$, there are $a_m, a_n \in \mathcal{A}_{N+1}$ such that $a_m < a_N$ and $a_N < a_n$ where a_m is the largest such value and a_n is the smallest such value. But by the recursive definition $\operatorname{Cl}_{\tau}(\mathcal{U}_{a_m}) \subseteq \mathcal{U}_{a_n}$. But $\operatorname{Cl}_{\tau}(\mathcal{U}_{a_m})$ is closed and \mathcal{U}_{a_n} is open, so since (X, τ) is normal there is $\mathcal{U}_{a_N} \in \tau$ such that $\operatorname{Cl}_{\tau}(\mathcal{U}_{a_m}) \subseteq \mathcal{U}_{a_N}$ and $\mathcal{U}_{a_N} \subseteq \mathcal{U}_{a_n}$. By the principle of induction, such a set exists for all a_n . That is, we now have for all rational numbers $p, q \in A$ with p < q, the following:

$$\operatorname{Cl}_{\tau}(\mathcal{U}_p) \subseteq \mathcal{U}_q$$

$$\tag{4}$$

We extend this to all rationals as follows. Given $p \in \mathbb{Q}$, $p \notin A$, define:

$$\mathcal{U}_p = \begin{cases} X & p > 1\\ \emptyset & p < 0 \end{cases}$$
(5)

Define $F: X \to \mathcal{P}(\mathbb{Q})$ via:

$$F(x) = \{ p \in \mathbb{Q} \mid x \in \mathcal{U}_p \}$$
(6)

Define $f: X \to [0, 1]$ via:

$$f(x) = \inf(F(x)) \tag{7}$$

First, since A is bounded below by 0, f(x) is well-defined for all $x \in X$. We now need to show that f is continuous, $f[\mathcal{C}] = \{0\}$, and $f[\mathcal{D}] = \{1\}$. First, $f[\mathcal{C}] = \{0\}$. If $x \in \mathcal{C}$, then $f(x) \in \mathcal{U}_0$ by definition of \mathcal{U}_0 (see above). Hence 0 is the smallest value $p \in \mathbb{Q}$ such that $f(x) \in \mathcal{U}_p$, and hence f(x) = 0. Next, $f[\mathcal{D}] = \{1\}$. By definition, for all $p \in \mathbb{Q}$ with $p \leq 1$, $f(x) \notin \mathcal{U}_p$. Hence $f(x) = \inf((1, \infty)) = 1$, so $f[\mathcal{D}] = \{1\}$. Lastly, we must prove f is continuous. This follows from the fact that A is a dense subset of [0, 1]. First, if $p \in \mathbb{Q}$ and $x \in \operatorname{Cl}_{\tau}(\mathcal{U}_p)$, then $f(x) \leq p$. This is true since for all $q \in \mathbb{Q}$ with p < q we have $\mathcal{U}_p \subseteq \mathcal{U}_q$, and hence:

$$f(x) = \inf\{r \in \mathbb{Q} \mid f(x) \in \mathcal{U}_r\} \le p \tag{8}$$

so $f(x) \leq p$. Next, if $x \notin \mathcal{U}_p$, then $f(x) \geq p$. Since $x \notin \mathcal{U}_p$, the only values $q \in \mathbb{Q}$ with $x \in \mathcal{U}_q$ must be greater than p, and hence $f(x) \geq p$. To conclude, a function is continuous if and only if for all $x \in X$ and all open \mathcal{V} with $f(x) \in \mathcal{V}$ there is an open $\mathcal{U} \subseteq X$ such that $x \in \mathcal{U}$ and $f[\mathcal{U}] \subseteq \mathcal{V}$. Let $x \in X$ and $\mathcal{V} \subseteq \mathbb{R}$ be an open set such that $f(x) \in \mathcal{V}$. But \mathcal{V} is open so there is an $\epsilon > 0$ such that $|y - f(x)| < \epsilon$ implies $y \in \mathcal{V}$. Let $c = f(x) - \epsilon/2$ and $d = f(x) + \epsilon/2$. Let p and q be rational numbers such that $c . Define <math>\mathcal{U}$ via:

$$\mathcal{U} = \mathcal{U}_q \setminus \operatorname{Cl}_\tau(\mathcal{U}_p) \tag{9}$$

Then \mathcal{U} is the difference of a closed set from an open set, and is hence open. By the above observation, for all $x_0 \in \mathcal{U}$ we have $p \leq f(x) \leq f(q_0)$, and hence $f[\mathcal{U}] \subseteq \mathcal{V}$. But also $x \in \mathcal{U}$ since p < f(x) < q. So f is continuous.

We get some use out of this immediately via Urysohn's metrization theorem.

Theorem 1.2 (Urysohn's Metrization Theorem). If (X, τ) is a regular second countable Hausdorff topological space, then it is metrizable.

Proof. Since (X, τ) is regular and second countable, it is normal. But also since (X, τ) is second countable there is a countable basis \mathcal{B} for τ . Let $\mathcal{U} : \mathbb{N} \to \mathcal{B}$ be a surjection so that we may list the elements as:

$$\mathcal{B} = \{\mathcal{U}_0, \dots, \mathcal{U}_n, \dots\}$$
(10)

For all $m, n \in \mathbb{N}$ with $\operatorname{Cl}_{\tau}(\mathcal{U}_m) \subseteq \mathcal{U}_n$, by Urysohn's lemma there is a continuous function $g_{m,n}: X \to [0, 1]$ such that:

$$g_{m,n}[\operatorname{Cl}_{\tau}(\mathcal{U}_m)] = \{1\} \text{ and } g_{m,n}[X \setminus \mathcal{U}_n] = \{0\}$$
(11)

The set of all such \mathcal{U}_m cover X since \mathcal{B} is a basis and the set of all such functions is countable since the elements are indexed by $\mathbb{N} \times \mathbb{N}$. Relabel these functions as $f_n : X \to [0, 1]$ for all $n \in \mathbb{N}$. Define the function $F : X \to \mathbb{R}^\infty$ via:

$$F(x) = (f_0(x), \dots, f_n(x), \dots)$$
(12)

Since \mathbb{R}^{∞} has the product topology, and since each component function f_n is continuous, F is continuous. F is injective since given $x, y \in X$ with $x \neq y$ one can find a basis element \mathcal{U}_n such that $x \in \mathcal{U}_n$ and $y \notin \mathcal{U}_n$, since (X, τ) is Hausdorff, but then there is a function f_n such that $f_n(x) = 1$ and $f_n(y) = 0$, hence $F(x) \neq F(y)$ since one of the components is different. Lastly, we must show F is a homeomorphism between (X, τ) and $(F[X], \tau_{\mathbb{R}_{F[X]}^{\infty}})$. Since F : $X \to \mathbb{R}^{\infty}$ is injective, $F : X \to F[X]$ is bijective. To show $F : X \to F[X]$ is a homeomorphism, since F is continuous, all that's left to show is that Fis an open mapping. Let $\mathcal{U} \subseteq X$ be open, and given $y \in f[\mathcal{U}]$, let $x \in \mathcal{U}$ be such that F(x) = y. Since $x \in X$ there is an $n \in \mathbb{N}$ such that $f_n(x) > 0$ and $f_n[X \setminus \mathcal{U}] = \{0\}$. Let $\mathcal{V} = \operatorname{proj}_n^{-1}[(0, \infty)]$. Then, since projections are continuous and $(0, \infty)$ is open, $\mathcal{V} \subseteq \mathbb{R}^{\infty}$ is open. But then $f[X] \cap \mathcal{V}$ is open in f[X] by definition of the subspace topology. But then $y \in f[X] \cap \mathcal{V}$, since:

$$\operatorname{proj}_{n}(y) = \operatorname{proj}_{n}(f(x)) = f_{n}(x)$$
(13)

and $f_n(x) > 0$, so $y \in \mathcal{V}$ by definition of \mathcal{V} . Lastly, $f[X] \cap \mathcal{V} \subseteq f[\mathcal{U}]$. For given $y \in f[X] \cap \mathcal{V}$, since $y \in f[X]$, there is some $x \in X$ such that f(x) = y. But if $y \in \mathcal{V}$, then $\operatorname{proj}_n(y) > 0$. But f_n is the zero function outside of \mathcal{U} , and hence $y \in f[\mathcal{U}]$. Since $f[\mathcal{U}]$ can be written as the union of all such \mathcal{V} , $f[\mathcal{U}]$ is open. That is, f is an open mapping with respect to the subspace topology on f[X]. Therefore $f: X \to \mathbb{R}^\infty$ is a topological embedding, meaning (X, τ) is homeomorphic to a subspace of a metrizable space, and is therefore metrizable. \Box

The last theorem to show is the Tietze extension theorem. It is logically equivalent to Urysohn's lemma.

Theorem 1.3 (Tietze Extension Theorem). If (X, τ) is a normal topological space, if $\mathcal{C} \subseteq X$ is closed, and if $f : \mathcal{C} \to \mathbb{R}$ is continuous, then there is a continuous function $\tilde{f} : X \to \mathbb{R}$ such that $\tilde{f}|_A = f$, and if f is bounded, then \tilde{f} is bounded as well with the same bounds.

The proof is a bit lengthy, but I'd like to point out what this theorem does *not* say. It does not say $f : \mathcal{C} \to Y$ can be extended to all of X where (Y, τ_Y) is any topological space. This is false. One need look no further than the Euclidean plane. \mathbb{S}^1 is a closed subset of the Euclidean plane \mathbb{R}^2 . The identity function

 $f: \mathbb{S}^1 \to \mathbb{S}^1$ is continuous. However, there is **no** extension of this function to all of \mathbb{R}^2 . To map \mathbb{R}^2 to \mathbb{S}^1 while keeping \mathbb{S}^1 fixed means, intuitively, we'd need to tear the plane at some point. This is not continuous. Imagine you had a lump of dough in the shape of a disk. How would you push the inside of the lump of dough to the outside to make a circle? You'd need to press your fingers through the dough and make a hole. The Tietze extension theorem is only applicable when the co-domain is \mathbb{R} .