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1 Connectedness

Connectedness is one of the fundamental notions in topology. Intuitively a
connected space is one that is in one piece. It can be hard to make precise
what one means by this, but it can be easier to describe what disconnected is.
For intuition we use the plane. Two isolated discs in the plane should not be
considered as a connected subspace since it is definitely not one piece (Fig. 1).
We use this to motivate disconnected spaces.

Definition 1.1 (Disconnected Topological Space) A disconnected topo-
logical space is a topological space (X, τ) such that there are non-empty open
subsets U ,V ∈ τ such that U ∩ V = ∅ and U ∪ V = X. �

Example 1.1 The discrete topology on Z2 is disconnected. This space is two
isolated points. To be precise, the set U = { 0 } is open and non-empty, the
set V = { 1 } is open and non-empty, and these two sets satisfy U ∩ V = ∅ and
U ∪ V = Z2. �

Example 1.2 If X is any set containing at least two points, and if τ is the
discrete topology, then (X, τ) is disconnected. Let x ∈ X be one point and
define U = {x }. Since τ is the discrete topology U is open and non-empty.
Let V = X \ U . Again, since τ is the discrete topology, V is open and since X
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Figure 1: A Disconnected Topological Space
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has at least two points it is also non-empty. But then U and V are non-empty
open subsets such that U ∩ V = ∅ and U ∪ V = X, showing that (X, τ) is
disconnected. �

Connected is just not disconnected.

Definition 1.2 (Connected Topological Space) A connected topological
space is a topological space (X, τ) that is not disconnected. �

Some familiar spaces like R and R2 are connected, but it takes a bit of work to
show this. The spaces that are easy to show are connected straight from the
definition have less-than-useful topologies.

Example 1.3 If X is any set and τ is the indiscrete topology, then (X, τ) is
connected. There are no two disjoint open sets U ,V that are non-empty and
cover X since the only open sets are ∅ and X. So (X, τ) is connected. �

Example 1.4 The particular point topology on R defines a set U to be open
if and only if 0 ∈ U or U = ∅. Hence any two non-empty open sets that
cover R must have 0 in common, meaning we cannot separate the space into
two disjoint non-empty open sets, so the particular point space is connected.
Intuitively, every point is connected to zero. �

Example 1.5 The excluded point topology on R defines a set U to be open if
and only if 0 /∈ U or U = R. Because of this if U and V are open sets that cover
R, one of these sets must be R. So it is impossible to separate the space using
disjoint non-empty open sets. �

Example 1.6 The finite complement topology on R is connected. Given any
non-empty open subsets U ,V, the intersection can not be empty since R\U and
R \V are both finite, meaning U ∩V is infinite (since R is infinite). So the finite
complement topology on R is connected. �

Example 1.7 For similar reasons, the countable complement topology on R
yields a connected space. Any two non-empty open subsets must have non-
empty intersection since R is uncountable and the complements of two non-
empty open subsets is countable (and hence so is the union of their comple-
ments). �

Example 1.8 The rationals Q with the subspace topology from R are discon-
nected. Let U be all positive rational numbers x such that x2 > 2. Let V be
all rational numbers x such that either x < 0 or x2 < 2. There is no rational
number whose square is 2, so U and V are non-empty disjoint open subsets
whose union is the entirety of Q. So the rationals are disconnected. �

Example 1.9 Let X ⊆ R be defined by X = (−∞, 0)∪(0, ∞). This is the real
line with the origin removed. Equipping this with the subspace topology yields
a disconnected space. Setting U = (−∞, 0) and V = (0, ∞) shows why. �
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When first discussing open and closed sets many students have trouble realizing
that open does not mean not closed, and closed does not mean not open. It is
possible for a subset to be open and not closed, closed and not open, neither
open nor closed, and both open and closed. This last part is particularly hard
to grasp since R has no subsets U ⊆ R that are both open and closed with the
exception of U = R and U = ∅. This is because the real line is connected and
connected spaces have no proper non-empty subsets that are both open and
closed. Let’s prove this.

Theorem 1.1. If (X, τ) is a topological space, then it is disconnected if and
only if there is a non-empty open proper subset U ( X that is also closed.

Proof. If (X, τ) is disconnected there exists non-empty disjoint open sets U and
V whose union is X. But then X \ U = V, and V is open, so U is closed. But
U is also open, so U is a non-empty proper subset of X that is also closed.
Now suppose there is a proper subset U ( X that is non-empty and both open
and closed. Since U is closed, V = X \ U is open. But since U is proper, V is
non-empty. But then U and V are disjoint non-empty open subsets whose union
is X, so (X, τ) is disconnected.

Theorem 1.2. If (X, τ) is a topological space, then it is disconnected if and only
if there are non-empty disjoint closed subsets C,D ⊆ X such that C ∪ D = X.

Proof. If (X, τ) is disconnected there are non-empty disjoint open subsets U ,V
such that U ∪ V = X. But then C = X \ U and D = X \ V are closed non-
empty disjoint subsets whose union is X. Now, suppose there are non-empty
disjoint closed subsets C,D ⊆ X such that C ∪ D = X. But then U = X \ C
and V = X \D are open non-empty disjoint sets whose union is X, so (X, τ) is
disconnected.

One of the most useful theorems of connected spaces is that the continuous
image of a connected topological space is still connected. To prove this requires
a small theorem about subspaces.

Theorem 1.3. If (X, τX) and (Y, τY ) are topological spaces, if f : X → Y is
continuous, and if U ⊆ f [X] is open in the subspace topology τYf[X]

, then f−1[U ]
is open.

Proof. Since U ∈ τYf[X]
, by the definition of the subspace topology there is

Ũ ∈ τY such that U = f [X] ∩ Ũ . But then we have:

f−1[U ] = f−1
[
f [X] ∩ Ũ

]
(1)

= f−1
[
f [X]

]
∩ f−1[Ũ ] (2)

= X ∩ f−1[Ũ ] (3)

= f−1[Ũ ] (4)

but f is continuous, so f−1[Ũ ] is open. Hence f−1[U ] is open.
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Theorem 1.4. If (X, τX) is a connected topological space, if (Y, τY ) is a topo-
logical space, and if f : X → Y is a continuous function, then (f [X], τYf[X]

) is
connected where τYf[A]

is the subspace topology from τY .

Proof. Suppose not. Then there are disjoint non-empty open subsets U ,V ∈
τYf[X]

such that U ∪ V = f [X]. But then, since τYf[X]
is the subspace topology

and f : X → Y is continuous, f−1[U ] and f−1[V] are open non-empty subsets
of X. But:

f−1[U ] ∪ f−1[V] = f−1[U ∪ V] = f−1
[
f [X]

]
= X (5)

so f−1[U ] and f−1[V] separate X, but (X, τ) is connected, a contradiction.
Hence, (f [X], τYf[X]

) is connected.

This does not say that (Y, τY ) is connected, only that the image of a connected
space (X, τX) remains connected. If the function f happens to be surjective,
then we can upgrade this theorem.

Theorem 1.5. If (X, τX) is a connected topological space, if (Y, τY ) is a topo-
logical space, and if f : X → Y is a surjective continuous function, then (Y, τY )
is connected.

Proof. By the previous theorem (f [X], τYf[X]
) is connected. But f is surjective

so f [X] = Y . And the subspace topology of Y with respect to τY is just τY .
That is, τYf[X]

= τY . So (Y, τY ) is connected.

Theorem 1.6. If (X, τX) is a connected topological space, if (Y, τY ) is a topo-
logical space, and if f : X → Y is a quotient map, then (Y, τY ) is connected.

Proof. Quotient maps are continuous and surjective, so by the previous theorem
(Y, τY ) is connected.

Theorem 1.7. If (X, τ) is a connected topological space, and if R is an equiva-
lence relation on X, then (X/R, τX/R) is connected where τX/R is the quotient
topology.

Proof. The canonical quotient function q : X → X/R defined by q(x) = [x]
is a quotient map. By the previous theorem, since (X, τ) is connected, so is
(X/R, τX/R).

Connectedness is one of the few properties that quotient maps preserve. Re-
member that quotients do not need to preserve the Hausdorff condition, first or
second countability, or any separation properties. The three main things they
preserve are sequentialness, connectedness, and compactness.

Just like how disconnected has a few equivalent definitions, so does connected.

Theorem 1.8. If (X, τ) is a topological space, then it is connected if and only
if the only subsets of X with empty topological boundary are ∅ and X.
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Proof. For suppose (X, τ) is disconnected. Then there is a non-empty proper
subset A ( X such that A is open and closed. But since A is closed, Clτ (A) = A.
But since A is open, Intτ (A) = A. But then:

∂τ (A) = Clτ (A) \ Intτ (A) = A \A = ∅ (6)

Going the other way, suppose there is a non-empty proper subset A ( X with
empty boundary, ∂τ (A) = ∅. But Intτ (A) ⊆ A for all A ⊆ X and A ⊆ Clτ (A)
as well. Hence Intτ (A) ⊆ Clτ (A). But if ∂τ (A) = ∅ then Clτ (A) \ Intτ (A) = ∅,
and thus Clτ (A) ⊆ Intτ (A). But then A = Clτ (A) = Intτ (A), so A is both
closed and open. But A is non-empty and a proper subset of X, and therefore
(X, τ) is disconnected. So (X, τ) is connected if and only if the only subsets of
X with empty boundary are ∅ and X.

Theorem 1.9. If (X, τ) is a topological space, and if
(
Z2, P(Z2)

)
is the dis-

crete topological space on Z2, then (X, τ) is connected if and only if for every
continuous function f : X → Z2 it is true that f is constant.

Proof. Suppose (X, τ) is connected and f : X → Z2 is not constant. Then
there is an x ∈ X such that f(x) = 0 and a y ∈ X with f(y) = 1. But then
f−1[{ 0 }] and f−1[{ 1 }] are non-empty disjoint open sets that cover X which is
a contradiction since (X, τ) is connected. So f must be a constant. Conversely,
suppose every continuous function f : X → Z2 is a constant and suppose (X, τ)
is disconnected. Then there is a non-empty proper subset A ( X that is both
open and closed. Define f : X → Z2 via:

f(x) =

{
0 x ∈ A
1 x /∈ A (7)

Since A is non-empty there is an x ∈ X such that f(x) = 0 and since A is also a
proper subset X \A is non-empty so there is a y ∈ X such that f(y) = 1. That
is, f is not a constant function. But f is continuous. The pre-image of { 0 } is
A, which is open, and the pre-image of { 1 } is X \ A which is also open since
A is closed. But by hypothesis the only continuous functions from X to Z2 are
constants, a contradiction. Therefore (X, τ) is connected.

2 The Connected Subsets of the Real Line

Now we classify all subsets of the real line and use this to prove the intermediate
value theorem, one of the fundamental results of real analysis and calculus, using
just a little bit of topology.

Theorem 2.1. If τR is the standard Euclidean topology on R, then (R, τR) is
connected.

Proof. Suppose not and let U and V be non-empty disjoint open sets with U ∪
V = R. Since U and V cover R and are disjoint, either 0 ∈ U or 0 ∈ V, but not
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both. Suppose 0 ∈ U (the idea is symmetric). Since V is non-empty there is
some x ∈ V. Either x < 0 or 0 < x by trichotomy. Suppose 0 < x (again, the
proof is symmetric). Let E ⊆ R be defined by:

E = { y ∈ U | 0 < y and y < x } (8)

Then E is bounded above by x and hence there is a least upper bound c ∈ R.
Since U and V cover R either c ∈ U or c ∈ V. Suppose c ∈ U . Since U is open
there is an ε > 0 such that |y − c| < ε implies y ∈ U . But then c + ε/2 is an
element of U that is still bounded by x since x ∈ V and hence |x− c| ≥ ε. But
then c+ ε/2 is an element of E that is greater than c, a contradiction since c is
the least upper bound of E. So c /∈ U . But then c ∈ V. But V is open so there
is an ε > 0 such that |y − c| < ε implies y ∈ V. But then c − ε/2 is an upper
bound for E that is less than c, a contradiction since c is the least upper bound
of E. So c /∈ V. But U and V cover R, which is a contradiction. Hence (R, τR)
is connected.

Theorem 2.2. If A ⊆ R is a connected subset with respect to the standard
topology τR, then A is one of the following sets:

A =



(−∞, a)

(−∞, a]

[a, ∞)

(a, ∞)

(a, b)

[a, b)

(a, b]

[a, b]

R
∅

(9)

for some a, b ∈ R.

Proof. Let a, b ∈ R ∪ {±∞} be defined by a = inf(A) and b = sup(A). Apply
the same argument as before with the set of all real numbers between a and b.
Complete the proof by asking if a and b are finite and whether or not a, b ∈ A.
This will give the table of possibilities above.

Theorem 2.3 (Intermediate Value Theorem). If a, b ∈ R, a < b, and if
f : [a, b]→ R is continuous with respect to the standard topologies on [a, b] and
R, then for all real numbers d between f(a) and f(b) there is a c ∈ (a, b) such
that f(c) = d.

Proof. Since [a, b] is connected and f is continuous, f
[
[a, b]

]
is connected as well.

But connected non-empty subsets of the real line are intervals (open, closed,
half-open, or infinite). Meaning if f(a) ≤ f(b), then [f(a), f(b)] ⊆ f

[
[a, b]

]
and

if f(b) ≤ f(a), then [f(b), f(a)] ⊆ f
[
[a, b]

]
. Either way, for all d between f(a)

and f(b) there is a c between a and b such that f(c) = d.
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Theorem 2.4 (1D Borsuk-Ulam Theorem). If f : S1 → R is a continuous
function, then there is a point x ∈ S1 such that f(x) = f(−x). That is, there
are two antepodal points on the circle that map to the same real number.

Proof. Define g : R→ S1 via g(t) =
(

cos(2πt), sin(2πt)
)

and h : [0, 1]→ R via

h(t) = f
(
g(t)

)
− f

(
g(t+ π)

)
. If h(0) = 0, we are done since (1, 0) and (−1, 0)

are then points with f
(
(1, 0)

)
= f

(
(−1, 0)

)
. Suppose h(0) is positive (the idea

is symmetric), h(t) = c > 0. Then:

h
(1

2

)
= f

((
cos(π), sin(π)

))
− f

((
cos(0), sin(0)

))
(10)

= f
(
(−1, 0)

)
− f

(
(1, 0)

)
(11)

= −
(
f
(
(1, 0)

)
− f

(
(−1, 0)

))
(12)

= −h(0) (13)

= −c (14)

and −c < 0. So, by the intermediate value theorem, there is some real number
0 < t0 <

1
2 such that h(t0) = 0. But then f

(
g(t0)

)
= f

(
g(t0 + π)

)
, and hence

g(t0) and g(t0 + π) are antepodal points that are mapped to the same real
number via f .

This is called the 1D Borsuk-Ulam theorem because the actual Borsuk-Ulam
theorem is quite stronger. If f : Sn → Rn is continuous, then there are antepodal
points x,−x ∈ Sn such that f(x) = f(−x).

3 Path-Connectedness

The more intuitive notion of connected, the idea one probably thinks of when
hearing connected, is being able to walk from one point to another while staying
in the space. This is a stronger notion and is called path connected.

Definition 3.1 (Path Connected Topological Space) A path connected
topological space is a topological space (X, τ) such that for all x, y ∈ X there
is a continuous function f : [0, 1]→ X such that f(0) = x and f(1) = y, where
[0, 1] has the subspace topology from R. �

Theorem 3.1. If (X, τ) is path connected, then it is connected.

Proof. Suppose not. Then there are non-empty disjoint open subsets U ,V such
that U ∪ V = X. But since U and V are non-empty, there are x ∈ U and y ∈ V.
But (X, τ) is path connected so there is a continuous function f : [0, 1] → X
such that f(0) = x and f(1) = y. But then f−1[U ] and f−1[V] are non-empty
disjoint open subsets that cover [0, 1]. But [0, 1] is connected, a contradiction.
Hence (X, τ) is connected.

Theorem 3.2. If n ∈ N and τRn is the Euclidean topology, then (Rn, τRn) is
path connected.
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Proof. Given x,y ∈ Rn, define α : [0, 1]→ Rn by α(t) = (1− t)x + ty. Then α
is continuous, α(0) = x, and α(1) = y. Hence, (Rn, τRn) is path connected.

Theorem 3.3. If (X, τX) is a path connected topological space, if (Y, τY ) is a
topological space, and if f : X → Y is continuous, then (f [X], τYf[X]

) is path
connected.

Proof. Let y0, y1 ∈ f [X]. Then there are x0, x1 ∈ X such that f(x0) = y0 and
f(x1) = y1. But (X, τX) is path connected, so there is a continuous function
α : [0, 1]→ X such that α(0) = x0 and α(1) = x1. But then f ◦α : [0, 1]→ f [X]
is the composition of continuous functions, which is hence continuous, such that
(f ◦ α)(0) = f(x0) = y0 and (f ◦ α)(1) = f(x1) = y1. So (f [X], τYf[X]

) is path
connected.

Theorem 3.4. If (X, τ) is a topological space, if A,B ⊆ X are such that
(A, τA) and (B, τB) are path connected, where τA and τB are the subspace
topologies, and if A ∩B 6= ∅, then (A ∪B, τA∪B) is path connected.

Proof. Since A ∩ B 6= ∅ there is an x ∈ A ∩ B. Let y0, y1 ∈ A ∪ B. Since
y0 ∈ A ∪ B, either y0 ∈ A or y0 ∈ B. Either way, since x ∈ A ∩ B and (A, τA)
and (B, τB) are path connected, there is a continuous function f : [0, 1]→ A∪B
such that f(0) = y0 and f(1) = x. Similarly there is a continuous function
g : [0, 1]→ A∪B such that g(0) = x and g(1) = y1. By the pasting lemma the
function h : [0, 1]→ A ∪B defined by:

h(t) =

{
f(2t) 0 ≤ t ≤ 1

2

g(2t− 1) 1
2 ≤ t ≤ 1

(15)

is continuous. But then h(0) = f(0) = y0 and h(1) = g(1) = y1, so h :
[0, 1]→ A ∪ B is a continuous function such that h(0) = y0 and h(1) = y1. So
(A ∪B, τA∪B) is path connected.

Connected need not imply path connected.

Example 3.1 (The Infinite Broom) The infinite broom is a subset of R2

defined by taking all closed line segments from (0, 0) to (1, 1
n+1 ) for all n ∈ N,

together with the half-open line segment between ( 1
2 , 0) and (1, 0), including

(1, 0) but excluding ( 1
2 , 0). See Fig. 2. If we did not include this last half-open

interval, the space would be path connected. But with this half-open interval
the space is connected but not path connected. There is no path from (0, 0) to
(1, 0). However, since the infinite broom has the subspace topology from R2,
any open subset that contains the half-open interval must contain points from
infinitely many of the line segments from (0, 0) to (1, 1

n+1 ). Because of this it
is impossible to disconnect the space with two non-empty disjoint open subsets,
showing that the infinite broom is connected. �
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Figure 2: The Infinite Broom
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Figure 3: The Topologist’s Sine Curve

Example 3.2 (The Topologist’s Sine Curve) The topologist’s sine curve
is a subset of R2 defined by taking all points of the form

(
x, sin(1/x)

)
with

x ∈ (0, 1] and adding the origin (0, 0) (Fig. 3). For reasons similar to the infinite
broom, the topologist’s sine curve is connected but not path connected. �
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