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1 Other Ideas for Compactness

Compact and sequentially compact are two of the most desirable properties used
in analysis, geometry, and topology. There are several weaker notions that have
found there way into several branches of mathematics. These properties are
weaker, but are satisfied by many more spaces. Paracompactness, for example,
is a particularly weak property that has enormous use in manifold theory and
geometry, and every metric space is paracompact (even though your average
metric space is not compact).

Definition 1.1 (Limit Point Compact Topogical Space) A limit point
compact topological space is a topological space (X, τ) such that for all infinite
subsets A ⊆ X there exists a point x ∈ X such that for all U ∈ τ with x ∈ U ,
there is a y ∈ A such that y 6= x and y ∈ U �

Limit point compact was the original defining property of compactness when
mathematicians were first thinking about the topology of the real line. Unlike
compactness and sequential compactness, where one can’t really say one idea
is stronger than the other, limit point compactness is a weaker notion. For the
real line, however, limit point compact is equivalent to compactness (this is a
corollary of the Bolzano-Weierstrass theorem).

Theorem 1.1. If (X, τ) is a sequentially compact topological space, then it is
limit point compact.

Proof. For if not, then there is an infinite set A ⊆ X such that for all x ∈ X
there is a U ∈ τ such that x ∈ U and for y ∈ A either y = x or y /∈ U . But
if A is infinite, there is a countably infinite subset B ⊆ A. Let a : N → B
be a bijection. But (X, τ) is sequentially compact, so there is a convergent
subsequence ak. Let x ∈ X be the limit. Then there is a U ∈ τ such that x ∈ U
and for all y ∈ A either y = x or y /∈ U . But akn → x and x ∈ U , so there is an
N ∈ N such that for all n ∈ N with n > N we have akn ∈ U . But a : N→ B is
bijective and k : N→ N is strictly increasing, so ak is injective, meaning for all
n > N , akn are distinct elements of B, and hence A, that are contained in U ,
which is a contradiction. So (X, τ) is limit point compact.
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Compact also implies limit point compact, but a weaker notion than compact
also implies limit point compact. This weaker notion is occasionally useful.

Definition 1.2 (Countably Compact Topological Space) A countably
compact topological space is a topological space (X, τ) such that for all count-
able open covers O ⊆ τ there is a finite subset ∆ ⊆ O such that ∆ is an open
cover. �

Theorem 1.2. If (X, τ) is compact, then it is countably compact.

Proof. Any countable open cover is indeed an open cover, and since (X, τ) is
compact, there must be a finite subcover.

Theorem 1.3. If (X, τ) is countably compact, then it is limit point compact.

Proof. If not there is an infinite subset A ⊆ X such that for all x ∈ X there is
a U ∈ τ such that for all y ∈ A either y = x or y /∈ U . But since A is infinite,
there is a countably infinite subset B ⊆ A. Let a : N → B be a bijection. But
then for all x ∈ X there is a U ∈ τ such that for all y ∈ B either y = x or
y /∈ U . But then Clτ (B) = B. For suppose not and let y ∈ Clτ (B) \ B. Then
there is an open subset U ∈ τ such that y ∈ U and for all z ∈ B either z = y or
z /∈ U . But y /∈ B, so z 6= y, and hence U ∩ B = ∅. But then, since U is open,
Clτ (B) ⊆ X \U and y /∈ X \U , a contradiction. So Clτ (B) = B and B is closed.
For all n ∈ N let Un+1 ∈ τ be such that Un+1 ∩B = { an }. Let U0 = X \ {B }.
Then:

O = {Un | n ∈ N } (1)

is a countable open cover of (X, τ). But since (X, τ) is countably compact,
there is a finite subcover ∆. But then there is a Un such that infinitely many
elements of B are contained inside Un, which is a contradiction. So (X, τ) is
limit point compact.

Theorem 1.4. If (X, τ) is compact, then it is limit point compact.

Proof. If (X, τ) is compact, then it is countably compact, and hence (X, τ) is
limit point compact.

Theorem 1.5. If (X, τ) if a limit point compact Frëchet topological space, then
it is countably compact.

Proof. Suppose not, and let O ⊆ X be a countably infinite open cover that has
no finite subcover. Since O is countably infinite there is a bijection U : N→ O.
Define Vn to be:

Vn =

n⋃
k=0

Uk (2)

Since O has no finite subcover, Vn 6= X for all n ∈ N. But then X \ Vn must
be infinite for each n ∈ N, so we can pick an injective sequence a : N→ X such
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that an /∈ Vn for all n ∈ N. That is, k ≤ n implies an /∈ Uk. Let A be defined
by:

A = { an ∈ X | n ∈ N } (3)

Then A is infinite, and since (X, τ) is limit point compact, there is a point
x ∈ X such that for all W ∈ τ with x ∈ W there is a y ∈ A such that y 6= x
and y ∈ W. That is, there is some n ∈ N such that an 6= x and an ∈ W. Since
O is an open cover there is a set UN ∈ O such that x ∈ UN . But since (X, τ)
is Fréchet, the singleton sets are closed. But then the set:

C = { ak ∈ X | ak 6= x and k ≤ N } (4)

is the union of finitely many points, and is hence closed. But x /∈ C by definition,
and hence x ∈ X \ C. Moreover, since C is closed, X \ C is open. But then
UN ∩ (X \ C) is an open set containing x. But then there is an n ∈ N such that
an 6= x and an ∈ UN ∩ (X \ C). From the definition of C it must be true that
n > N . But then an ∈ UN and n > N , a contradiction since N ≤ n implies
an /∈ UN . So (X, τ) is countably compact.

Sequentially compact is a nice property, and it is quite a shame compactness
does not imply it in general. It is also a shame sequential compactness does not
imply compact. If we add sequential to our hypothesis, we can get one direction
to work. First, a little lemma.

Theorem 1.6. If (X, τ) is countably compact, and if C ⊆ X is closed, then
(C, τC) is countably compact.

Proof. The proof is a mimicry of the idea for compact spaces. Given a countable
open cover of C, by adding X \ C we obtain a countable open cover of X since C
is closed, so X \ C is open, and adding one more set to a countable collection is
still countable. But since (X, τ) is countably compact there is a finite subcover.
Restricting this finite subcover to C shows that (C, τC) is countably compact.

Theorem 1.7. If (X, τ) is a sequential countably compact topological space,
then it is sequentially compact.

Proof. For if not, then there is a sequence a : N → X with no convergent
subsequence. Let A ⊆ X be defined by:

A =
⋃
n∈N

Clτ
(
{ an }

)
(5)

Then A is sequentially closed. For if b : N→ A is a sequence that converges to
y ∈ X, either there is an m ∈ N such that y ∈ Clτ ({ am }) or not. If there is such
an m, then y ∈ A. If not, then by choosing ak and b` to be subsequences such
that b`n ∈ Clτ ({ akn }), we have found a convergent subsequence akn → y, which
is a contradiction. Hence A is sequentially closed. But (X, τ) is sequential, so
A is closed. But then (A, τA) is countably compact, where τA is the subspace
topology. But countably compact implies limit point compact, so there is a
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point x ∈ A such that for all U ∈ τA with x ∈ U , there is a an such that an 6= x
and an ∈ U . But x must be in only finitely many sets of the form Clτ

(
{ an }

)
,

otherwise a would have a convergent subsequence converging to x. But then
there is an N ∈ N such that for all n > N we have x /∈ Clτ

(
{ an }

)
. But then,

defining:

B =

∞⋃
n=N+1

Clτ
(
{ an }

)
(6)

we see that B is closed, by the previous argument, but B does not contain the
point x, which is a contradiction since x is still a limit point of B. So (X, τ) is
sequentially compact.

A short corollary of this is often used when sequential compactness is desired.

Theorem 1.8. If (X, τ) is compact and first countable, then it is sequentially
compact.

Proof. Compact implies countably compact, and first countable implies sequen-
tial. So (X, τ) is countably compact and sequential, and therefore sequentially
compact.

While sequentially compact does not imply compact, there is a partial result. Se-
quentially compact always implies countably compact, and often enough count-
ably compact is sufficient.

Theorem 1.9. If (X, τ) is sequentially compact, then it is countably compact.

Proof. If not there is a countably infinite open cover O ⊆ τ with no finite
subcover. But then, since O is countably infinite, there is a bijection U : N→ O
so that we may list the elements as:

O = {U0, . . . , Un, . . . } (7)

But Un 6= X for all n ∈ N, otherwise ∆ = {Un } is a finite subcover. So
X \ Un 6= ∅ for all n ∈ N. Moreover, the set Vn defined by:

Vn =

n⋃
k=0

Un (8)

is such that Vn 6= X, otherwise O has a finite subcover. Define a : N → X via
an ∈ X \ Vn for all n ∈ N. But (X, τ) is sequentially compact, so there is a
convergent subsequence ak with limit x ∈ X. But since O covers X, there is a
UN such that x ∈ UN . But then for all n > N we have akn 6∈ UN , which is a
contradiction since akn → x. So (X, τ) is countably compact.

One way to weaken compactness is by lessening open covers to countable open
covers. The other way is by lessening finite subcover to countable subcover.
This idea has proven quite useful in many applications in analysis.
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Definition 1.3 (Lindelöf Topological Space) A Lindelöf topological space
is a topological space (X, τ) such that for every open cover O ⊆ τ there is a
countable subcover ∆ ⊆ O. �

Theorem 1.10. If (X, τ) is a topological space, then it is countably compact
and Lindelöf if and only if it is compact.

Proof. Compact implies countably compact, and it also implies Lindelöf since
every open has a finite open subcover, which is definitely a countable open
subcover. Going the other, if we are given O ⊆ τ an open cover, since (X, τ) is
Lindelöf there is a countable subcover ∆̃ ⊆ O. But (X, τ) is countably compact,
so if ∆̃ is a countable open cover, then there is a finite subcover ∆ ⊆ ∆̃. But
then ∆ ⊆ O is a finite subcover, so (X, τ) is compact.

Theorem 1.11. If (X, τ) is second countable, then it is Lindelöf.

Proof. If not, there is an open cover O ⊆ τ with no countable subcover. Since
(X, τ) is second countable there is a countable basis B. Let U : N → B be a
surjection:

B = {U0, . . . , Un, . . . } (9)

Define A ⊆ N via:

A = {n ∈ N | there exists V ∈ O such that Un ⊆ V } (10)

A is non-empty since B is a basis, and hence for all V ∈ O there is some Un ∈ B
such that Un ⊆ V. Since O is not countable, it is certainly not finite, and hence
not empty, showing that A is non-empty as well. Since A ⊆ N it is countable
as well. By the axiom of choice we can find a function V : A→ O such that for
all n ∈ A, Un ⊆ Vn. But then the set ∆ ⊆ O defined by:

∆ = { Vn | n ∈ N } (11)

is a countable open cover of (X, τ). For given x ∈ X, since O is an open cover
there is a W ∈ O such that x ∈ W. But B is a basis, so there is a Un ∈ B such
that x ∈ Un and Un ⊆ W. But then Un ⊆ Vn, so x ∈ Vn, showing that ∆ is a
countable subcover of O, which is a contradiction. Hence, (X, τ) is Lindelöf.

Theorem 1.12. If (X, τ) is second countable and sequentially compact, then
it is compact.

Proof. Second countable implies Lindelöf and sequentially compact implies count-
ably compact, so (X, τ) is a countably compact Lindelöf space, and is therefore
compact.

Theorem 1.13. If (X, τ) is metrizable, then it is compact if and only if it is
countably compact.
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Proof. Compact always implies countably compact. Let’s reverse this. Metriz-
able spaces are first-countable, and hence sequential, so if (X, τ) is countably
compact, it is sequentially compact by a previous theorem. By the equivalence
of compactness theorem, metrizable spaces are sequentially compact if and only
if they are compact. So (X, τ) is compact.

Theorem 1.14. If (X, τ) is countably compact, and if f : X → R is continuous
with respect to the standard topology τR, then f is bounded.

Proof. For if not, if f is unbounded, then for all n ∈ N, since f is continuous
f−1

[
(−n, n)] is an open subset of X and the set:

O =
{
f−1

[
(−n, n)

]
| n ∈ N

}
(12)

is a countable open cover of X that has no finite subcover since f is unbounded,
which is a contradiction since f is countably compact. Hence, f is bounded.

Theorem 1.15. If (X, τX) is countably compact, if (Y, τY ) is a topological
space, and if f : X → Y is a continuous function, then (f [X], τYf[X]

) is count-
ably compact, where τYf[X]

is the subspace topology.

Proof. The proof is a mimicry of the idea for compact spaces. Given a countable
open cover of f [X], since f is continuous this pulls back to a countable cover of
X. Since (X, τX) is countably compact there is a finite subcover, which pushes
forward to a finite subcover of f [X].

Theorem 1.16 (Generalized Extreme Value Theorem). If (X, τ) is count-
ably compact, and if f : X → R is continuous with respect to the standard
topology τR, then there are points xmin, xmax ∈ X such that for all x ∈ X,
f(xmin) ≤ f(x) ≤ f(xmax).

Proof. Since f is continuous and (X, τ) is countably compact, f [X] ⊆ R is
countably compact. But the real line is metrizable, and subspaces of metrizable
spaces are metrizable, meaning f [X] is countably compact and metrizable, which
means it is compact. But then by the Heine-Borel theorem, f [X] is closed and
bounded. Since it is bounded, there exists m,M ∈ R such that m is the infimum,
and M is the supremum. Since f [X] is closed, m,M ∈ f [X], meaning there are
xmin, xmax such that f(xmin) = m and f(xmax) = M . Since m and M are the
bounds of f [X], for all x ∈ X we have f(xmin) ≤ f(x) ≤ f(xmax).

Theorem 1.17 (Extreme Value Theorem). If (X, τ) is compact, and if
f : X → R is continuous with respect to the standard topology τR, then there are
points xmin, xmax ∈ X such that for all x ∈ X, f(xmin) ≤ f(x) ≤ f(xmax).

Proof. Since compact implies countably compact, this follows from the previous
theorem.

This idea is useful enough that it gets a name.
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Definition 1.4 (Pseudocompact Topological Space) A pseudocompact
space is a topological space (X, τ) such that every continuous function f :
X → R is bounded. �

The extreme value theorem shows that compact implies pseudocompact. So
does sequentially compact. The proof is identical if we know that the continuous
image of a sequentially compact space is sequentially compact. Let’s prove this.

Theorem 1.18. If (X, τX) is sequentially compact, if (Y, τY ) is a topologi-
cal space, and if f : X → Y is continuous, then (f [X], τYf[X]

) is sequentially
compact.

Proof. For suppose not and let b : N → f [X] be a sequence with no converent
subsequence. Since bn ∈ f [X], by the axiom of choice we can find a sequence
a : N → X such that f(an) = bn for all n ∈ N. But (X, τX) is sequentially
compact, so there is a convergent subsequence ak with limit x ∈ X. That is,
akn → x. But f is continuous, so f(akn)→ f(x). But then bkn → f(x), meaning
bk is a converegent subsequence, which is a contradiction. So (f [X], τYf[X]

) is
sequentially compact.

Theorem 1.19. If (X, τ) is sequentially compact, then it is pseudocompact.

Proof. For if f : X → R is continuous, then f [X] ⊆ R is sequentially compact,
and since (R, τR) is metrizable, sequentially compact implies compact, mean-
ing f [X] is closed and bounded by the Heine-Borel theorem. Hence, (X, τ) is
pseudocompact.

Theorem 1.20. If (X, τ) is metrizable, then (X, τ) is compact if and only if
it is pseudocompact.

Proof. Compact always implies pseudocompact. Since (X, τ) is metrizable, to
prove pseudocompact implies compact it is sufficient to prove that (X, τ) is
sequentially compact (since compact and sequentially compact are equivalent in
metrizable spaces). Suppose (X, τ) is not sequentially compact, and let d be a
metric that induces τ . Then there is a sequence a : N→ X with no convergent
subsequence. Then the set A ⊆ X defined by:

A = { an ∈ X | n ∈ N } (13)

is closed. Not only that, but (A, τA) as a subspace is discrete. For given x ∈ X
there is some εx > 0 such that the εx ball around x contains at most one
element of A (otherwise we could obtain a convergent subsequence tending to
x). In particular, we can apply this to every an ∈ A meaning there is an open
subset in A that contains only an. Using this, define f : A→ R via f(an) = n.
Then, since A is closed, and since f is continuous since A is a discrete space,
by the Tietze extension theorem there is a continuous function f̃ : X → R such
that f̃ |A = f . But f̃ is not bounded, which is a contradiction since (X, τ) is
pseudocompact. Hence, (X, τ) is sequentially compact, and therefore compact
since (X, τ) is metrizable.
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The real line has the property that it can be written as the union of countably
many compact sets. Namely, given n ∈ N, define Cn = [−n, n]. Then each Cn is
a compact subset and

⋃
n Cn = R, so R is the union of countably many compact

sets. This gets a name.

Definition 1.5 (σ Compact Topological Space) A σ compact topological
space is a topological space (X, τ) such that there exists a countable set O such
that for all C ∈ O, C ⊆ X is compact, and such that X =

⋃
O. �

The real line, complex plane (or Euclidean plane), and Euclidean space are
all Lindelöf spaces, even though they are not compact. This has some use in
analysis. It’s a lot easier to see that Rn is σ compact since closed balls of radius
n for all n ∈ N create a countable collection of compact subsets that cover the
space. Fortunately, σ compact implies the Lindelöf property.

Theorem 1.21. If (X, τ) is σ compact, then it is Lindelöf.

Proof. For if not, then there is an open cover O ⊆ τ with no countable subcover.
But (X, τ) is σ compact so there is a countable set B of compact subsets of X
such that X =

⋃
B. Since B is countable there is a surjection A : N → B. But

then for all n ∈ N, (An, τAn
) is compact, by hypothesis, and O covers An. So

there is a finite subcover ∆n. But then, since ∆n is finite for all n ∈ N, the set
∆ ⊆ O defined by:

∆ =
⋃
n∈N

∆n (14)

is countable. But ∆ is a cover of X since given x ∈ X there is an n ∈ N such
that x ∈ An, and hence x ∈

⋃
∆n, but ∆n ⊆ ∆, so x ∈

⋃
∆. So ∆ is a

countable subcover of O, a contradiction. Hence, (X, τ) is Lindelöf.

There is one more property that is ever-so-slightly stronger than σ compact,
but has found quite a lot of use in the theory of manifolds and Riemannian
geometry. The idea of being compactly exhaustible.

Definition 1.6 (Compactly Exhaustible Topological Space) A compactly
exhaustible topological space is a topological space (X, τ) such that there is a
sequence A : N→ P(X) such that for all n ∈ N it is true that An is a compact
subset, An ⊆ Intτ (An+1), and such that X =

⋃
n∈NAn. �

Euclidean space is compactly exhaustible (every manifold is). Take Cn to be
the closed ball of radius n. Then, just like with σ compact, these sets are all
compact and cover Rn, but also the closed ball of radius n fits entirely inside
the open ball of radius n+1 showing that Cn ⊆ Intτ (Cn+1). Now, for the result.
Compactly exhaustible implies σ compact.

Theorem 1.22. If (X, τ) is compactly exhaustible, then it is σ compact.

Proof. Let A : N → P(X) be a sequence such that An is compact, An ⊆
Intτ (An+1), and

⋃
n∈NAn = X. Then the set:

O = {An | n ∈ N } (15)
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is a countable collection of subsets that are compact and cover X, so (X, τ) is
σ compact.
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