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1 Partitions of Unity

We’re a stone’s throw away (no pun intended A. H. Stone) from the metriza-
tion theorems. It seems historically the ideas of paracompactness and local
finiteness grew out of the study of metrization theorems, but these notions have
found enormous use elsewhere. Indeed, the use of paracompactness outside of
general topology is probably more well known than the metrization theorems.
In manifold theory and geometry the importance comes from the relation of
paracompactness to partitions of unity. Some of the key theorems of differential
topology (like the Whitney embedding theorem) and Riemannian geometry (ev-
ery smooth manifold is a Riemannian manifold) rely on the fact that topological
manifolds have partitions of unity. This is a corollary of the fact that topological
manifolds are paracompact and Hausdorff. In this section we introduce the idea
and prove some basic theorems.

First, some notation. Given two sets A and B we can prove there exists a set
F(A, B) that is the set of all functions from A to B. Hence if we have two
topological spaces (X, τX) and (Y, τY ) we can collect all continuous functions
fromX to Y . This is denoted C0(X, Y ), or sometimes just C(X, Y ). The reason
for the 0 is that in some cases (i.e. smooth manifolds and topological vector
spaces) it is possible to say a function from one topological space to another
is differentiable or twice differentiable or even smooth. We would then use
the notations C1(X, Y ), C2(X, Y ), and C∞(X, Y ), respectively. For general
topological spaces there is no notion of derivative, so writing C(X, Y ) is fine.

A word of warning. Some authors use C(X) to denote continuous functions
from (X, τ) to R, where R has the standard Euclidean topology. Some authors
use C(X) to denote continuous functions from (X, τ) to C, where C = R2 has
the standard topology of the Euclidean plane. These notions are not equivalent,
and it becomes the responsibility of the reader to remember which notation the
author is using. I won’t be doing this. When I want to speak of continuous
function into R, I’ll write C(X, R). If I want to consider continuous functions
into the complex plane, it’ll be denoted C(X, C).

Definition 1.1 (Support of a Function) The support of a function f : X →
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R from a topological space (X, τ) to the real line is the set suppτ (f) ⊆ X
defined by:

suppτ (f) = Clτ

(
f−1

[
R \ { 0 }

])
(1)

That is, the closure of the set of all points in X that don’t map to zero. �

For those familiar with algebra, we can replace R with any ring (or, more com-
monly, any field). In analysis one often uses C instead.

Definition 1.2 (Partition of Unity) A partition of unity in a topological
space (X, τ) is a subset R ⊆ C(X, R) of continuous functions from X to R such
that:

1. For all f ∈ X and for all x ∈ X it is true that f(x) ≥ 0.

2. The set O ⊆ P(X) defined by:

O = { suppτ (f) | f ∈ R} (2)

is locally finite.

3. For all x ∈ X we have: ∑
f∈R

f(x) = 1 (3)

�

This last part may be confusing since R can be uncountably big and we’ve no
notion of summing over sets that big (It is possible to do this, however. For those
who have studied measure theory you may recall that if the sum of uncountably
many non-negative real numbers converges, then all but countably many are
zero). There is no issue of convergence because of the second property. Since
the supports are locally finite, given any x ∈ X there are only finitely many
f ∈ R such that f(x) 6= 0. So the equation in part 3 is a finite sum for each
point.

It is useful to attach partitions of unity to open covers. In almost all applications
we consider partitions of unity that are subordinate to the cover.

Definition 1.3 (Partition of Unity Subordinate to an Open Cover) A
partition of unity that is subordinate to an open cover O in a topological space
(X, τ) is a partition of unity R such that for all f ∈ R there is a U ∈ O such
that suppτ (f) ⊆ U . �

Every paracompact Hausdorff space has a subordinate partition of unity for
every open cover. Conversely, every Hausdorff space that always admits sub-
ordinate partitions of unity is paracompact. We will prove these two facts in
todays notes. The shrinking lemma is required, which says that paracompact
Hausdorff spaces are precisely paracompact.
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Definition 1.4 (Precise Refinement) A precise refinement of a set A ⊆
P(X) in a topological space (X, τ) is a set A′ ⊆ P(X) such that for all A′ ∈ A′
there is an A ∈ A such that Clτ (A′) ⊆ A. �

With refinements we only required A′ ⊆ A. This allows for the possibility that
A = A′. With precise refinements, unless the sets under consideration happen
to be closed, to make Clτ (A′) ⊆ A requires shrinking A a little.

Definition 1.5 (Precisely Paracompact Topological Space) A precisely
paracompact topological space is a topological space (X, τ) such that for all
open covers O ⊆ τ of X there exists a precise locally finite open refinement X
of O that covers X. �

Theorem 1.1 (The Shrinking Lemma). If (X, τ) is paracompact and Haus-
dorff, then it is precisely paracompact.

Proof. For if not then there is an open cover O ⊆ τ with no precise locally finite
open refinement that covers X. But (X, τ) is paracompact so there is a locally
finite open refinement X of O. But (X, τ) is Hausdorff and paracompact, so it
is regular. Hence for all x ∈ X and for all U ∈ τ with x ∈ U there is a V ∈ τ
such that x ∈ V and Clτ (V) ⊆ U . Using this, since X is an open cover of X, for
all x ∈ X there is a Ux ∈ X such that x ∈ Ux. Let Vx ∈ τ be such that x ∈ Vx
and Clτ (Vx) ⊆ Ux. Define Õ via:

Õ = { Vx | x ∈ X } (4)

This is now a precise open refinement of O, but it is probably not locally finite
(we’ve picked an open set for every point in the space). But Õ is an open cover
of X since given x ∈ X it is contained in Vx which is an element of Õ. Since
(X, τ) is paracompact there is a locally finite open refinement X̃ of Õ that is
an open cover of X. But then for all U ∈ X̃ there is a V ∈ Õ such that U ⊆ V.
But by definition of Õ there is a W ∈ X such that Clτ (V) ⊆ W. But X is
refinement of O, so there is a E ∈ O such that W ⊆ E . But then:

Clτ (V) ⊆ Clτ (U) ⊆ W ⊆ E (5)

and hence Clτ (V) ⊆ E . But then X̃ is a precise locally finite open refinement of
O that covers X, a contradiction. Hence, (X, τ) is precisely paracompact.

Theorem 1.2. If (X, τ) is a Hausdorff topological space, then it is paracompact
if and only if every open cover has a subordinate partition of unity.

Proof. Suppose (X, τ) is Hausdorff and every open cover has a subordinate
partition of unity. Suppose it is not paracompact, meaning there is an open
cover O ⊆ τ with no locally finite open refinement that covers X. But since
O is an open cover, by hypothesis there is a subordinate partition of unity
R ⊆ C(X, R). Define X via:

X =
{
f−1

[
R \ { 0 }

]
| f ∈ R} (6)
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Since each element of R is continuous, and since R \ { 0 } is open, the elements
of X are open. X also covers X since given x ∈ X we have:∑

f∈R

f(x) = 1 (7)

So there must be some f ∈ R such that f(x) 6= 0. But then x ∈ f−1
[
R \ { 0 }

]
,

meaning X is an open cover. It is a refinement of O since given U ∈ X we
have that there is some f ∈ R such that U = f−1

[
R \ { 0 }

]
. But since R is

subordinate to O there is a V ∈ O such that suppτ (f) ⊆ V. But then:

U = f−1
[
R \ { 0 }

]
⊆ Clτ

(
f−1

[
R \ { 0 }

])
= suppτ (f) ⊆ V (8)

and hence U ⊆ V. Lastly, X is locally finite. For let x ∈ X. SinceR is a partition
of unity there is a U ∈ τ such that x ∈ U and only finitely many f ∈ R are such
that suppτ (f) ∩ U is non-empty. But f−1

[
R \ { 0 }

]
⊆ suppτ (f), meaning only

finitely many elements of X are such that f−1[R \ { 0 }
]

intersects U , and hence
X is locally finite. So X is a locally finite open refinement of O that covers X, a
contradiction. So (X, τ) is paracompact. Now, suppose (X, τ) is paracompact
and Hausdorff. Let O ⊆ τ be an open cover of X. Since (X, τ) is paracompact
and Hausdorff, it is precisely paracompact, so there is a precise locally finite
open refinement X0 of O that covers X. But then X0 is an open cover of X,
and since (X, τ) is precisely paracompact there is a precise locally finite open
refinement X1 of X0. Then for all U1 ∈ X1 there is a U0 ∈ X0 and a U ∈ O such
that Clτ (U1) ⊆ U0 and Clτ (U0) ⊆ U (See Fig. 1). But Clτ (U1) is closed, and
since U0 is open, X \ U0 is closed. But Clτ (U1) ⊆ U0 so X \ U0 and Clτ (U1)
are disjoint. But since (X, τ) is paracompact and Hausdorff, by Dieudonné’s
theorem it is normal. But then by Urysohn’s lemma, since Clτ (U1) and X \ U0
are closed and disjoint, there is a continuous function fU1 : X → [0, 1] such
that fU1

[
Clτ (U1)

]
= { 1 } and fU1

[
X \ U0] = { 0 }. That is, fU1 is continuous,

evaluates to 1 on the closure of U1, zero outside of U0, and some values between
0 and 1 for points in U0 \ Clτ (U1). The set:

R̃ = { fU1 | U1 ∈ X1 } (9)

is almost a partition of unity. Since Urysohn’s lemma restricts the range of the
functions to [0, 1], we have f(x) ≥ 0 for all x ∈ X and f ∈ R̃. The set of
supports are locally finite, since the support of fU1 is Clτ (U0), and these form a
locally finite set. The last thing we need is that the sums at all points evaluate
to one. R̃ almost certainly does not have this property. Given x ∈ X, since X1

is an open cover of X, there is a U1 ∈ X1 such that x ∈ U1. But then fU1(x) = 1.
Hence the function Φ : X → R+ defined by:

Φ(x) =
∑
f∈R̃

f(x) (10)

is positive for all x ∈ X. It is also continuous since locally it is the finite sum
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Figure 1: Nested Precise Refinements for Thm. 1.

of continuous functions. Since Φ(x) is never zero we can define:

gU1(x) =
fU1(x)

Φ(x)
(11)

The set:
R = { gU1 | U1 ∈ X1 } (12)

is then a partition of unity subordinate to O, contradicting the claim that none
such partition of unity exists. Hence, if (X, τ) is a paracompact Hausdorff
space, then every open cover has a subordinate partition of unity.

That’s about all we’ll say about partitions of unity, as far as point-set topology
is concerned. In the world of differential topology and geometry there are two
important theorems that are worth noting. A topological manifold is a topo-
logical space (X, τ) that is Hausdorff, second countable, and locally Euclidean.
This last property means for all x ∈ X there is a U ∈ τ such that x ∈ U and
(U , τU ) is, as a subspace, homeomorphic to Rn for some n ∈ N. If n is fixed (if
(X, τ) is connected it has to be fixed) it is called the dimension of the manifold.

A smooth manifold is a topological manifold with a smooth structure which
makes it possible to talk about the derivatives of functions, tangent vector, and
vector fields, topics common in a multivariable calculus course. A Riemannian
manifold is a smooth manifold with a Riemannian metric which makes it pos-
sible to measure angles of tangent vectors and compute the lengths of curves.
Notions like geodesics and parallel transport occur in Riemannian geometry. So
every Riemannian manifold is a smooth manifold and every smooth manifold is
a topological manifold. Topological manifolds are paracompact and Hausdorff,
so every open cover has a subordinate partition of unity. For smooth mani-
folds one can improve this. Every open cover in a smooth manifold (X, τ) has
a subordinate partition of unity R where the functions f ∈ R can be taken
to be smooth (which now makes sense since in smooth manifolds we can take
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derivatives). Using this it can be shown (without much work, surprisingly) that
every smooth manifold can be made into a Riemannian manifold. It can also
be shown that every smooth manifold of dimension n ∈ N is actually just a
topological subspace of R2n+1 (one can improve this to R2n, but this is harder).

With this, a natural question is whether or not every topological manifold can
be made into a smooth manifold. Shockingly, the answer is no. There are topo-
logical manifolds that are so rough and rugged that it is impossible to smooth
them out. If this is hard to picture, know that all topological manifolds of di-
mension n < 4 can be smoothed out into smooth manifolds. The first examples
of pointy manifolds occur in dimension 4. Historically, Kervaire’s manifold was
the first one discovered, which is a compact 10 dimensional topological manifold.
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