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1 Topological Manifolds

Topological manifolds are spaces that look like Rn, and that are topologically
nice. They are one of the primary motivators for general topology and have
widespread applications in physics, computer graphics, and other branches of
mathematics.

Definition 1.1 (Locally Euclidean Topological Space) A locally Euclidean
topological space is a topological space (X, τ) such that for all x ∈ X there is
an open set U ∈ τ such that x ∈ U , an n ∈ N, and a continuous injective open
mapping ϕ : U → Rn. �

Since ϕ : U → Rn is an injective function, it is bijective onto it’s image. Hence
ϕ : U → ϕ[U ] is a continuous bijective open mapping, which is therefore a
homeomorphism. Another way of stating the definition of locally Euclidean
spaces is that every point has an open set about it that is homeomorphic to an
open subset of Rn for some n ∈ N.

Example 1.1 Euclidean space Rn with the standard Euclidean topology τRn

is locally Euclidean. Given a point x ∈ Rn choose U = Rn and ϕ = idRn .
That is, the open set about x is all of Euclidean space, and the function ϕ
is the identity. The identity is always a homeomorphism, which is therefore
a continuous injective open mapping. This shows us that Euclidean space is
indeed locally Euclidean. �

Example 1.2 If V ⊆ Rn is an open subset, then (V, τV) is locally Euclidean
where τV is the subspace topology inherited from the standard Euclidean topol-
ogy τRn . Given a point x ∈ V, choose U = V and ϕ = ιV , the inclusion mapping.
Since V is open, ιV is an open mapping, and inclusion mappings are always in-
jective and continuous. Thus any open subspace of Rn is locally Euclidean. �

Example 1.3 The bug-eyed line, which is the quotient of R × Z2 under the
identification (x, 0)R(x, 1) for all x 6= 0, is locally Euclidean. For points away
from the double-origin the bug-eyed line looks, locally, like the real line. The
only cause for concern is the two origins. Label 0′ = [(0, 0)] and 0′′ = [(0, 1)].
The set (−1, 1)× { 0 } is open in the product space R× Z2 since Z2 is discrete
and (−1, 1) is open in R. The set

(
(−1, 0) ∪ (0, 1)

)
× { 1 } is also open for the
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same reason. Let U be the union of these two open sets, which is therefore open.
Note that this set is saturated with respect to the quotient map. That is, U =
q−1
[
q[U ]

]
. But the quotient map takes saturated open sets to saturated open

sets, so q[U ] is open in the quotient topology. This open set is homeomorphic to
(−1, 1) and contains 0′. We can do a similar argument for 0′′ showing that the
bug-eyed line is locally Euclidean. Note, however, that it is not Hausdorff. �

Example 1.4 The long-line is locally Euclidean. Given any point in the long-
line it locally looks like (−1, 1), the open unit interval in R. This space is very
large, it is not second-countable. Note then that is would be impossible to embed
the long-line into Euclidean space, no matter how large the dimension. �

Topological manifolds should be nice enough that it is possible to embed them
into Rn. This is not a requirement, however, but the previous two examples
show us that locally Euclidean by itself can still yield bizarre examples. This
motivates the following definition.

Definition 1.2 (Topological Manifold) A topological manifold is a topologi-
cal space (X, τ) that is locally Euclidean, second-countable, and Hausdorff. �

Example 1.5 Rn is a topological manifold, with its standard topology. It is
locally Euclidean, as seen previously, and it is also second-countable (being the
product of a second-countable space) and Hausdorff (since it is metrizable). �

Example 1.6 If V ⊆ Rn is an open subset, then (V, τV) is a topological mani-
fold. We’ve already shown that such a space is locally Euclidean, but it is also
Hausdorff and second-countable since these properties are inherited by sub-
spaces. �

Example 1.7 As far as set theory is concerned, a function f : A → B from
a set A to a set B is a subset of A × B satisfying certain properties. We can
use this to define locally Euclidean topological spaces by looking at continuous
functions from Rm to Rn for some m,n ∈ N. Given f : Rm → Rn, continuous,
f ⊆ Rm × Rn can be given the subspace topology. This makes it a closed
subset since f is continuous. It is also a locally Euclidean subspace. For given(
x, f(x)

)
∈ f , let U = f and define F : f → Rm via:

F
(
(x, f(x)

)
= x (1)

This is just the projection of the elements of f ⊆ Rm×Rn onto Rm. Projections
are continuous. Let’s show F is injective and an open mapping. It is injective
since given: (

x0, f(x0)
)
6=
(
x1, f(x1)

)
(2)

we must have x0 6= x1 (since if x0 = x1, then f(x0) = f(x1) by definition of a
function). So then:

F
(
(x0, f(x0)

)
6= F

(
(x1, f(x1)

)
(3)

meaning F is injective. There is a continuous inverse F−1 : Rm → f given by:

F−1(x) =
(
x, f(x)

)
(4)
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Since f is continuous, F−1 is continuous since both components are continuous.
So F is an open mapping and f is a locally Euclidean subspace of Rm×Rn. Since
subspaces of Rm+n are also Hausdorff and second-countable, this shows us that
the graph of a continuous function f : Rm → Rn is a topological manifold. �

Example 1.8 S1 with the subspace topology from R2 is locally Euclidean.
We’ll show this in two ways. First, via orthographic projection. We split the
circle into four parts:

UNorth = { (x, y) ∈ S1 | y > 0 } (5)

USouth = { (x, y) ∈ S1 | y < 0 } (6)

UEast = { (x, y) ∈ S1 | x > 0 } (7)

UWest = { (x, y) ∈ S1 | x < 0 } (8)

See Fig. 1. Then we define four functions:

ϕNorth : UNorth → R ϕNorth

(
(x, y)

)
= x (9)

ϕSouth : USouth → R ϕSouth

(
(x, y)

)
= x (10)

ϕEast : UEast → R ϕEast

(
(x, y)

)
= y (11)

ϕWest : UWest → R ϕWest

(
(x, y)

)
= y (12)

Since these are projection mappings, they are continuous. From how the four
open sets are defined, each is also injective. To show it is an open mapping we
just need to find a continuous inverse with respect to the image of these sets.
Note that for all four functions the range is (−1, 1). We have the following
inverse functions:

ϕ−1North(x) =
(
x,
√

1− x2
)

(13)

ϕ−1South(x) =
(
x, −

√
1− x2

)
(14)

ϕ−1East(y) =
(√

1− y2, y
)

(15)

ϕ−1West(y) =
(
−
√

1− y2, y
)

(16)

each of which is continuous since the square root function is continuous. The
four sets also cover S1, showing that S1 is locally Euclidean. Since R2 is second-
countable and locally Euclidean, S1 is as well. Hence the circle is a topological
manifold. �

This shows we can cover S1 using four sets each of which is homeomorphic to an
open subset of R. We can do better, only two sets are needed. Place an observer
at the north pole N = (0, 1). Given any other point (x, y) the line from the
observer to the point is not parallel to the x axis, meaning eventually it must
intersect it. Let’s solve for when. The line segment α(t) = (1 − t)N + t(x, y)
starts at the north pole at time t = 0 and ends at the point (x, y) on the circle
at time t = 1. The line intersects the x axis when the y component is zero.
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Figure 1: Cover of S1 with Locally Euclidean Sets
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Thus we wish to solve 1− t+ ty = 0 for t. We get:

t0 =
1

1− y (17)

The x coordinate at time t = t0 is then:

ϕN

(
(x, y)

)
=

x

1− y (18)

This is stereographic projection about the north pole. It is continuous since it is
a rational function. It is also bijective with a continuous inverse. Given X ∈ R
we can solve for the value (x, y) ∈ S1 that gets mapped to X by reversing the
previous process. The line β(t) = (1 − t)N + t(X, 0) starts at the north pole
and ends at (X, 0). We wish to solve for the time t when ||β(t)||2 = 1 which
corresponds to the moment the line intersects the circle. We have:

||β(t)||2 = ||(1− t)N + t(X, 0)||2 (19)

= ||(1− t)(0, 1) + t(X, 0)||2 (20)

= ||(tX, 1− t)||2 (21)

=
√

(tX)2 + (1− t)2 (22)

Solving for ||β(t)||2 = 1 is equivalent to solving ||β(t)||22 = 1 so we need to
consider the expression (tX)2 + (1− t)2. We get:

1 = (tX)2 + (1− t)2 (23)

= t2X2 + 1− 2t+ t2 (24)

= t2(1 +X2)− 2t+ 1 (25)

meaning we want to solve for t2(1+X2)−2t = 0. The solution t = 0 corresponds
to the North pole, which is not the one we want. Dividing through by t we get:

t1 =
2

1 +X2
(26)

The point (x, y) corresponds to β(t1) and is given by:

ϕ−1N (X) =
( 2X

1 +X2
,
−1 +X2

1 +X2

)
(27)

This function is continuous since it is a rational function in each component.
Because of this ϕN : S1 \ { (0, 1) } → R is a homeomorphism. Doing a similar
projection about the south pole shows that S1 can be covered by two open sets,
S1 \ { (0, 1) } and S1 \ { (0, −1) }, each of which is homeomorphic to R.

It is impossible to do this with one set. This is because S1 is not homeomorphic
to an open subset of R since S1 is compact and the only open subset of R that
is compact is the empty set, but S1 is non-empty. So two is the best we can do.

5



Example 1.9 The sphere Sn ⊆ Rn+1 is also locally Euclidean for all n ∈ N.
Define U±k ⊆ Sn via:

U+
k = {x ∈ Sn | xk > 0 } (28)

U−k = {x ∈ Sn | xk < 0 } (29)

These 2n + 2 open sets cover Sn and each is homeomorphic to an open subset
of Rn. Define ϕ±k : U±k → BRn

1 (0) via:

ϕ±k (x) = (x0, . . . , xk−1, xk+1, xn) (30)

That is, projecting down that kth axis. This is continuous with a continuous

inverse ϕ±k
−1

: BRn

1 (0)→ U±k given by:

ϕ±k
−1

(x) = (x0, . . . , xk−1, ±
√

1− ||x||22, xk, . . . , xn−1) (31)

This is also continuous, so Sn is locally Euclidean. For reasons similar to the
circle, the higher dimensional spheres are also topological manifolds. �

These mappings are called orthographic projections. They are formed by placing
an observer at infinity and projecting what they see down to the plane. This is
shown in Fig. 2

Definition 1.3 (Topological Chart) A topological chart of dimension n in a
topological space (X, τ) about a point x ∈ X is an ordered pair (U , ϕ) such that
U ∈ τ , x ∈ U , and ϕ : U → Rn is an injective continuous open mapping. �

Locally Euclidean could equivalently be described as a topological space (X, τ)
such that for all x ∈ X there is a chart (U , ϕ) such that x ∈ U . A collection of
charts that covers a space is called an atlas. See Fig. 3.

Definition 1.4 (Topological Atlas) A topological atlas for a topological
space (X, τ) is a set A of topological charts in (X, τ) such that for all x ∈ X
there is a (U , ϕ) ∈ A such that x ∈ U . �

That is, an atlas is a collection of charts whose domains cover the space. Think
of an actual atlas used for navigating. The pages consist of various locations
on the globe, but only provides local information. To get information that is
more global requires piecing some of the charts of the atlas together. A locally
Euclidean space is a topological space (X, τ) such that there exists an atlas A
for it. We’ve shown that Sn can be covered by 2n+ 2 charts using orthographic
projection. We can do better using stereographic projection the same way we
did for S1. This is shown for S2 in Fig. 4.

There are two other types of projections that are useful for geometric reasons
in covering Sn. These are the near-sided and far-sided projections. Near-sided
projection is shown in Fig. 5. The idea is to take an observer and place them
somewhere on the z axis above the sphere. The portion of the sphere that
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Figure 2: Orthographic Projection of the Sphere

Rn

U
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ϕ[U ]
ϕ

Figure 3: A Chart in a Manifold
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Figure 4: Stereographic Projection for the Sphere

is visible is then projected down to the xy plane. Far-sided projection is the
opposite. You place the observer at the same spot but remove everything that
can be seen. The result is a hollow semi-sphere. You then unwrap this on to the
plane to get the projection. This is shown in Fig. 6. Stereographic projection
is then just far-sided projection at the north pole, and orthographic projection
is near-sided projection at infinity.

Example 1.10 (Real Projective Space) Let X = Rn+1 \ {0 }. Define the
equivalence relation R on X via xRy if and only if y = λx for some λ ∈ R\{ 0 }.
RPn is the set X/R and the topology τRPn is the quotient topology induced by
R. As a set this is the set of all lines in Rn+1 that pass through the origin.
That is, a point [x] ∈ RPn is the entire line through the origin that passes
through the point x. Let’s start with RP1. Any line can be described by an
angle 0 ≤ θ < π. If you vary the line you are on slightly, you are just varying
this angle. Hopefully it becomes intuitive that RP1 is in fact a one dimensional
locally Euclidean space (it may not be intuitive as to why it is Hausdorff or
second countable, but we’ll get there). A similar thinking applies to RPn. Let’s
be precise. Let Uk ⊆ X be defined by:

Uk = {x ∈ Rn+1 \ {0 } | xk 6= 0 } (32)

This is the complement of the kth axis, which is open since the kth axis is closed.
It is also saturated with respect to the canonical quotient map q : X → RPn
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Figure 5: Near-Sided Projection of the Sphere
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Figure 6: Far-Sided Projection of the Sphere
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defined by q(x) = [x]. That is, q−1
[
q[Uk]

]
= Uk. It is always the case that Uk ⊆

q−1
[
q[Uk]

]
, let’s show this reverses for our particular set Uk. Let x ∈ q−1

[
q[Uk]

]
.

Then [x] ∈ q
[
Uk
]

so there is some y ∈ Uk such that [x] = [y]. But then yk 6= 0
and x = λy for some λ ∈ R \ { 0 }. But then xk 6= 0, and hence x ∈ Uk. So Uk
is saturated. But since q is a quotient map, if Uk is open and saturated, the set
Ũk = q[Uk] is open. Define ϕk : Ũk → Rn via:

ϕk

(
[x]
)

=
(x0

xk
, . . . ,

xk−1

xk
,

xk+1

xk
, . . . ,

xn

xk

)
(33)

We have to prove this is well-defined in two regards. First, there is no division
by zero since x ∈ Uk implies xk 6= 0. Second, this is well defined as a function.
By that I mean if [x] = [y], then there is some λ ∈ R \ { 0 } such that y = λx.
But then:

ϕk

(
[y]
)

=
(y0

yk
, . . . ,

yk−1

yk
,

yk+1

yk
, . . . ,

yn

yk

)
(34)

=
(λx0

λxk
, . . . ,

λxk−1

λxk
,
λxk+1

λxk
, . . . ,

λxn

λxk

)
(35)

=
(x0

xk
, . . . ,

xk−1

xk
,

xk+1

xk
, . . . ,

xn

xk

)
(36)

= ϕk

(
[x]
)

(37)

So it is well-defined. It is also continuous. This is one of the characteristics of the
quotient map. Given a topological space (Y, τY ) and a function f : X/R→ Y ,
f is continuous if and only if f ◦ q : X → Y is continuous where q : X → X/R
is the canonical quotient map. The composition ϕk ◦ q is a rational function,
which is continuous, so ϕk is continuous. The inverse function is given by:

ϕ−1k (x) =
[
(x0, . . . , xk−1, 1, xk, . . . , xn−1)

]
(38)

which is continuous since the function f : Rn → Rn+1 \ {0 } defined by:

f(x) = (x0, . . . , xk−1, 1, xk, . . . , xn−1) (39)

is continuous, so ϕ−1k is the composition of continuous functions. Since the sets

Uk cover Rn+1 \ {0 }, the sets Ũk also cover RPn. Because of this RPn is locally
Euclidean. It is also second countable since it can be covered with finitely many
open sets each of which is homeomorphic to an open subset of Rn, which is
hence second countable. Since RPn is the finite union of second countable open
subspaces, it is second countable itself. It is also Hausdorff. Given [x] 6= [y] we
have that y is not of the form λx for any real number, meaning x and y lie on
different lines through the origin. Let θ be defined by:

θ =
1

4
arccos

( x · y
||x||2 ||y||2

)
(40)

θ is one-fourth the angle made between the lines through the origin spanned by
x and y. Let U and V be defined by:

U =
{

z ∈ Rn+1 \ {0 } | ](x, z) < θ
}

(41)

V =
{

z ∈ Rn+1 \ {0 } | ](y, z) < θ
}

(42)
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Figure 7: RPn is Hausdorff

Where ](p, q) is the angle between the non-zero vectors p and q. These sets
are open cones in Rn+1 \ {0 } (Fig. 7) which are also saturated with respect to
q, and by the choice of θ they are disjoint. But then Ũ = q[U ] and Ṽ = q[V]
are disjoint open subsets of RPn such that [x] ∈ Ũ and [y] ∈ Ṽ. Hence RPn is
Hausdorff. The real projective space is therefore a topological manifold. �

The elements of RPn are equivalence classes of Rn+1 \ {0 }. A point in RPn is
a line in Rn+1 through the origin. It is not immediately clear that RPn can be
embedded as a subspace of RN for some N ∈ N. It indeed can, in fact RPn can
be embedded into R2n for all n > 0, but this is by no means obvious. The case
n = 1 is slightly obvious if you really think about what RP1 is (it’s just a circle
S1). The case RP2 is less obvious (RP2 is not a sphere). We can not embed the
real projective plane into R3, unlike the sphere. If we try we’ll end up with a
surface that must intersect itself. This is shown in Fig. 8. This representation
is known as the cross cap. We can do better than this. The cross cap has a
crease in it, and this can be removed. David Hilbert, one of the pioneering
mathematicians of the early 20th century, thought it impossible to draw the
real projective plane in R3 in such a way that it has no crease. He asked his
student Werney Boy to try and prove this. Instead Boy discovered a method
of drawing the real projective plane in R3 that has no crease (it is still self
intersecting). This is called the Boy surface. It is shown in Fig. 9. Bryant and
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Figure 8: The Real Projective Plane

Figure 9: The Boy Surface
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Figure 10: The Bryant-Kusner Parameterization of the Boy Surface

Kusner discovered a way to do this using somewhat simpler functions involving
complex variables. The Bryant-Kusner parameteriation is shown in Fig. 10.

2 Smooth Manifolds

General topological spaces do not have a notion of derivative. We can speak
of continuity, but differentiation in Rn requires a function to locally be ap-
proximated by a tangent-hyperplane. That is, the tangent line for functions
f : R → R, and tangent plane for functions F : R2 → R. Topological vec-
tor spaces (vector spaces with a topology that makes scalar multiplication and
vector addition continuous) have enough structure, but this is perhaps too pro-
hibitive. Topological manifolds also have enough structure that one can ask
questions about smoothness. Let (X, τ) be a topological manifold, and let
x ∈ X. Given two charts (U , ϕ) and (V, ψ) that contain x, the function ψ ◦ϕ−1
is a continuous function from ϕ[U ∩ V] to ψ[U ∩ V], both of which are open
subsets of Rn. That is, if we label E = ϕ[U ∩ V] and W = ψ[U ∩ V], then
ψ ◦ ϕ−1 : E → W is a continuous function from an open subset of Euclidean
space to another open subset of Euclidean space. It is then perfectly valid to
ask if this function has partial derivatives, or continuous partial derivatives, or
if all partial derivatives of all orders exist. That is, if the function is smooth.
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This motivates the following.

Definition 2.1 (Smoothly Compatible Charts) Smoothly compatible charts
in a topological space (X, τ) are charts (U , ϕ) and (V, ψ) in (X, τ) such that
either U ∩V = ∅, or the function ψ ◦ϕ−1 : ϕ[U ∩V]→ ψ[U ∩V] is smooth (as a
function from on open subset of Rn to another open subset of Rn). �

Definition 2.2 (Smooth Atlas) A smooth atlas on a topological space (X, τ)
is an atlas A on (X, τ) such that for all (U , ϕ), (V, ψ) ∈ A it is true that (U , ϕ)
and (V, ψ) are smoothly compatible. �

Recall our analogy with an actual atlas. A smooth atlas says that as you
transition from one chart to another, this is done smoothly. That is, suppose
you have two maps containing sections of Europe. The first map has Paris,
the second map has Berlin, and they overlap somewhere in between. As you
travel from Paris to Berlin you start with the first map, since it contains Paris.
Eventually you’ll reach the edge of the first map and need to start using the
second. When you do this, when you transition between maps, it would be nice
if the second map looked roughly the same as the first map in this overlapping
region. That is, it would be nice if you could smoothly transition between maps.
This is precisely what the smooth compatibility condition does. A smooth atlas
allows you to navigate anywhere in your space using smooth transitions.

Definition 2.3 (Smooth Manifold) A smooth manifold is an ordered triple
(X, τ, A) such that (X, τ) is a topological manifold, and A is a smooth atlas
for (X, τ). �

The examples of topological manifolds that we’ve so far discussed are all smooth
manifolds, when the appropriate atlas is chosen. This then inspires the following
question.

Are all topological manifolds also smooth manifolds? (43)

Let’s provide a definition.

Definition 2.4 (Smoothable Manifold) A smoothable manifold is a topo-
logical manifold (X, τ) such that there exists a smooth atlas A for (X, τ). �

Kervaire showed in 1960 that there are 10-dimensional topological manifolds
that are not smoothable. That is, there is no smooth atlas for the space. Freed-
man found a compact 4-dimensional example in 1982. Kuiper’s example, found
in 1967, gives an 8-dimensional example that has a rather explicit formula. Note
that the sphere S2 can be described by x2 + y2 = 1. Under certain conditions,
functions f : X → Rn can yield topological manifolds by considering f−1[{ c }]
for some constant c ∈ Rn. For example f : R2 → R defined by f(x, y) = x2+y2.
The circle is the pre-image f−1[{ 1 }]. In a similar manner, consider the function
f : C5 → C defined by:

f(z1, z2, z3, z4, z5) =

z51(1 + z1) + z32(1 + ez32) + z23(1 + e2z43) + z24(1 + e3z44) + z25(1 + e4z45) (44)
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Figure 11: Smooth Function Between Manifolds

Where e is the standard Euler constant. Note that C5 can be identified with R10

and C can be seen as R2. The pre-image of { 0 } is an 8-dimensional manifold
that cannot be smoothed.

In dimensions 1, 2, and 3, all topological manifolds are smoothable. The cube
may not be smooth itself, but we can smooth it out into a sphere. Similarly, a
triangle can be smoothed into a circle. The fact that some topological manifolds
cannot be smooth becomes very hard to imagine. This difficulty is amplified by
the fact that the first examples of such a phenomenon occur with four dimen-
sional spaces.

3 Smooth Functions and Tangent Spaces

Given two smooth manifolds (X, τX , AX) and (Y, τY , AY ), it is possible to
speak of smooth functions between them. The key here is to locally translate
the problem back to Rn and ask about smoothness there. We use the transition
maps to do this. Note that if φ : X → Y is a function, if x ∈ X, and if
(U , ϕ) ∈ AX and (V, ψ) ∈ AY are charts such that x ∈ U and f(x) ∈ V, then
the function ψ ◦ φ ◦ ϕ−1 is a function from a subset of Rm to a subset of Rn. If
φ is continuous, then this composition is a function between an open subset of
Rm and a subset of Rn and we can ask questions about smoothness. The visual
for this scheme is provided in Fig. 11. This motivates the following definition.

Definition 3.1 (Smooth Functions Between Smooth Manifolds) A smooth
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function from a smooth manifold (X, τX , AX) to a smooth manifold (Y, τY , AY )
is a continuous function φ : X → Y such that for all x ∈ X there are charts
(U , ϕ) ∈ AX and (V, ψ) ∈ AY such that x ∈ U , f(x) ∈ V, and the composition
ψ ◦ φ ◦ ϕ−1 is a smooth function from an open subset of Rm to a subset of
Rn. �

Note the definition does not require m = n. The two smooth manifolds can
have different dimensions. You could, for example, smoothly embed the circle
S1 into the sphere S2 by placing it along the equator.

Apart from allowing us to perform calculus with manifolds, smooth functions
also allow us to define the notion of tangent space. For surfaces in R3 we define
the tangent space to a point as a plane that contains point and lies tangential to
the surface. That is, it is the best linear approximation to the surface near the
point. This definition requires an embedding of the surface into R3, whereas the
general smooth manifold is an abstract topological space and has no embedding
into RN associated with it. It is indeed possible to embed a smooth manifold
of dimension n into some Euclidean space RN (N = 2n + 1 does the trick by
Whitney’s theorem), but this takes some work. Given an n dimensional smooth
manifold (X, τ, A) it would be nice if we can define tangent spaces without
extra assumptions about embeddings. We do this using derivations.

Let C∞(X, R) denote the set of all smooth functions f : X → R where R carries
the standard Euclidean smooth structure. A derivation at a point x ∈ X is a
function D : C∞(X, R)→ R such that:

D(af + bg) = aD(f) + bD(g) (Linearity)

D(fg) = f(x)D(g) +D(f)g(x) (Liebniz Rule)

This second condition is the product rule from calculus. The tangent space at
x is defined as follows.

Definition 3.2 (Tangent Space in a Smooth Manifold) The tangent space
to a point x ∈ X in a smooth manifold (X, τX , AX) is the set TxX defined by:

TxX = {D : C∞(X, R)→ R | D is a derivation at x } (45)

That is, the set of all linear and Liebnizean functions at x. �

The tangent space at x has the structure of a vector space since derivations can
be added. Since we wish to think of the elements of TxX as tangent vectors
starting at the point x, we usually denote them by v ∈ TxX or w ∈ TxX. We
can add them by using the following rule. Given a function f ∈ C∞(X, R), we
define (v + w)(f) via:

(v + w)(f) = v(f) + w(f) (46)

This addition on the right hand side makes sense since v(f) and w(f) are real
numbers. Scalar multiplication is also defined:

(a · v)(f) = a · v(f) (47)
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where a ∈ R is any scalar. Being a vector space, TxX has a dimension. It is
quite fortunate (and perhaps the reason why we have defined TxX this way)
that the dimension is precisely the dimension of the manifold. This can be
proved by finding an explicit basis. Pick a chart (U , ϕ) ∈ A that contains x and
define the differentiation operators ∂ϕk : C∞(X, R)→ R via:

∂ϕk(f) =
∂

∂xk

∣∣∣
x=ϕ(x)

(
f ◦ ϕ−1

)
(48)

Since ϕ : U → Rn and f : X → R are smooth, we have that f ◦ϕ−1 is a smooth
function from an open subset of Euclidean space to the real numbers. Taking
partial derivatives is thus well-defined. Any tangent vector (i.e., any derivation)
v ∈ TxX can be written as a linear combination of these n partial derivatives.
We have thus attached to every point x ∈ X a real-vector space TxX, mimicing
the notion of tangent space for surfaces in R3. We’ve also accomplished this
without embedding the manifold into Euclidean space.

4 Riemannian Manifolds

Topological manifolds belong to point-set (or general) topology. Smooth man-
ifolds initiate the study of differential topology. Geometry starts when we can
measure things like lengths and angles, volumes and areas, and so-on. Smooth
manifolds have no means of making such measurements. To do so we need an
angle measuring device. In Rn this is given by the Euclidean dot product. We
define:

x · y =

n−1∑

k=0

xkyk (49)

From this we may define lengths.

||x|| =
√

x · x (50)

and from this we obtain angles.

∠(x, y) = arccos
( x · y
||x|| ||y||

)
(51)

Geometry begins with the ability to define a dot-product on the tangent vectors
of a smooth manifold. This is given via a Riemannian metric. The rest of these
notes attempt to define this notion.

A vector field V on a smooth manifold (X, τ, A) is an assignment of a tangent
vector v ∈ TxX to every x ∈ X. That is, at every point in the space we choose
an arrow that starts at that point. If v ∈ TxX is the tangent vector assigned
to x ∈ X we denote this by v = Vx.
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Given such a vector field, if f ∈ C∞(X, R) is a smooth function, we obtain
another function V f : X → R via:

(V f)(x) = Vx(f) (52)

Remember that Vx is a tangent vector at x, meaning it is a derivation v :
C∞(X, R) → R. That is, it takes in smooth functions and returns a real
number. Because of this the above equation is well-defined. The vector field is
said to be smooth if V f is a smooth function for all f ∈ C∞(X, R).

A Riemannian metric is an assigment to every point x ∈ X a function gx :
TxX × TxX → R that mimics the definition of inner products. That is:

gx(a0v0 + a1v1, w) = a0gx(v0, w) + a1gx(v1, w) (Linearity)

gx(v, w) = gx(w, v) (Symmetry)

gx(v, v) ≥ 0 (Positivity)

gx(v, v) = 0⇔ v = 0 (Definiteness)

Moreover, this assignment is done smoothly. That is, for every pair of smooth
vector fields V,W on X, the function g(V, W ) : X → R defined by:

(
g(V, W )

)
(x) = gx(Vx, Wx) (53)

is smooth. A Riemannian manifold is a smooth manifold together with a Rie-
mannian metric.

While not every topological manifold is smoothable, it is true that every smooth
manifold can be made into a Riemannian manifold. This is one of the more im-
portant applications of partitions of unity and paracompactness. Every smooth
manifold is paracompact, and hence every open cover has a subordinate par-
tition of unity. Moreover, for smooth manifolds the partition of unity can be
chosen to consist solely of smooth functions. This new fact can be used to build
a Riemannian metric on any smooth manifold.

19


	Topological Manifolds
	Smooth Manifolds
	Smooth Functions and Tangent Spaces
	Riemannian Manifolds

