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In algebraic topology one uses algebraic structures like groups and vector spaces
to solve topological problems. This is usually done by associating some algebraic
object with a given topological space, and showing that homotopy equivalences
or homeomorphisms preserve the nature of this algebraic device. We won’t be
exploring this route, it deserves its own course. Instead we’ll dive into topological
algebra. Here we reverse the idea, attaching a topology to algebraic structures.
In particular we’ll discuss topological groups, perhaps the simplest object of
study in topological algebra. There are a few motivating examples for the study
of topological groups.

� A real topological vector space is a real vector space (V, +) together with a
topology τ that makes vector addition (v, w) 7→ v + w and scalar multipli-
cation (a, v) 7→ av continuous operations. The additive nature of vector
addition yields an Abelian group, meaning every topological vector space
has a canonical topological group associated to it.

� A Banach space is a normed vector space (usually over R or C) such that
the metric induced by the norm yields a complete metric space. Banach
spaces are, in particular, topological vector spaces and the addition of
vectors forms a topological group.

� A Lie group is a smooth manifold with a group operation that is smooth.
Lie groups are, in particular, topological groups.

There is no pre-requesite for algebra in this course, so we’ll take the time to
develop the basics of group theory.

1 Group Theory

There are a few competing views on how best to describe groups. Some say it is
the study of symmetry. One may also view groups as combinatorial objects. I’ll
take the approach of generalized arithmetic. The addition of integers and the
multiplication of matrices provide two motivating examples of groups. Many of
the theorems involving these two arithmetics need only a few common traits.
Groups generalize these traits to abstract objects.
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Definition 1.1 (Group) A group is an ordered pair (G, ∗) where G is a set
and ∗ : G×G→ G is a function (called a binary operation) that is associative,
has an identity, and contains inverse elements. That is:

1. For a, b, c ∈ G it is true that a ∗ (b ∗ c) = (a ∗ b) ∗ c (Associativity)

2. There is an e ∈ G such that a ∗ e = e ∗ a = a for all a ∈ G (Identity)

3. For all a ∈ G there is a b ∈ G such that a ∗ b = b ∗ a = e (Inverses)

�

Example 1.1 The integers Z with addition form a group. That is, (Z, +)
is a group. It is perhaps one of the simplest group structures. Addition is
associative, zero serves as an identity, and for all n ∈ Z, −n is an additive
inverse. �

Example 1.2 The real numbers with addition (R, +) also form a group. Note
that we may identify (Z, +) as a subgroup (defined soon) of the real numbers. �

Example 1.3 The positive real numbers R+, together with ordinary multi-
plication, form a group. That is, (R+, · ) is a group. Multiplication is indeed
associative, and 1 serves as the identity. Since we have excluded 0 from the set,
for all x ∈ R+, 1

x is the inverse of x. �

Example 1.4 Let GLn(R) be the set of all n × n matrices of real numbers
with non-zero determinant. That is, all matrices A ∈ Rn×n such that A−1

exists. This set, together with matrix multiplication, forms a group. This is the
general linear group of order n. Matrix multiplication is associative, and the
identity matrix In serves as the identity. Since the set consists solely of invertible
matrices, inverses exist in GLn(R). Note that, unlike the previous examples,
matrix multiplication is not commutative. That is, given A,B ∈ GLn(R), it is
possible for AB 6= BA to be true. �

Commutative groups are useful enough to deserve a name.

Definition 1.2 (Abelian Group) An Abelian group is a group (G, ∗) such
that for all a, b ∈ G it is true that a ∗ b = b ∗ a. �

We now take the time to explore the basic properties that all groups have
in common. None of these are deep theorems, and come straight from the
definition.

Theorem 1.1. If (G, ∗) is a group, and if e, e′ ∈ G are identities, then e = e′

Proof. Since e and e′ are identities we have:

e = e ∗ e′ = e′ (1)

and hence e = e′.
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Theorem 1.2. If (G, ∗) is a group, if a ∈ G, and if b and b′ are inverses of a,
then b = b′.

Proof. For let e ∈ G be the unique identity. Then we have:

b = b ∗ e (Identity)

= b ∗ (a ∗ b′) (Inverse)

= (b ∗ a) ∗ b′ (Associativity)

= e ∗ b′ (Inverse)

= b′ (Identity)

and hence b = b′.

Because of this, given a ∈ G we denote by a−1 the unique inverse of a.

Theorem 1.3. If (G, ∗) is a group, and if a, b ∈ G, then (a ∗ b)−1 = b−1 ∗ a−1.

Proof. Since inverses are unique, we need only prove that b−1 ∗a−1 is indeed an
inverse of a ∗ b. We have:

(a ∗ b) ∗ (b−1 ∗ a−1) = a ∗
(
(b ∗ b−1) ∗ a−1

)
(Associativity)

= a ∗ (e ∗ a−1) (Inverse)

= a ∗ a−1 (Identity)

= e (Inverse)

by the uniqueness of inverses, (a ∗ b)−1 = b−1 ∗ a−1.

Theorem 1.4. If (G, ∗) is a group, and if a ∈ G, then (a−1)−1 = a.

Proof. We have that:

a = a ∗ e (Identity)

= a ∗
(
a−1 ∗ (a−1)−1

)
(Inverse)

= (a ∗ a−1) ∗ (a−1)−1 (Associativity)

= e ∗ (a−1)−1 (Inverse)

= (a−1)−1 (Identity)

and hence a = (a−1)−1.

Theorem 1.5 (Left-Cancellation Law). If (G, ∗) is a group, if a, b, c ∈ G,
and if a ∗ b = a ∗ c, then b = c.
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Proof. Letting e ∈ G be the unique inverse, if a ∗ b = a ∗ c, then we have:

b = e ∗ b (Identity)

= (a−1 ∗ a) ∗ b (Inverse)

= a−1 ∗ (a ∗ b) (Associativity)

= a−1 ∗ (a ∗ c) (Hypothesis)

= (a−1 ∗ a) ∗ c (Associativity)

= e ∗ c (Inverse)

= c (Identity)

so we conclude that b = c.

We can mirror this argument to prove the right-cancellation law.

Theorem 1.6 (Right-Cancellation Law). If (G, ∗) is a group, if a, b, c ∈ G,
and if b ∗ a = c ∗ a, then b = c.

Proof. Letting e ∈ G be the unique inverse, if b ∗ a = c ∗ a, then we have:

b = b ∗ e (Identity)

= b ∗ (a ∗ a−1) (Inverse)

= (b ∗ a) ∗ a−1 (Associativity)

= (c ∗ a) ∗ a−1 (Hypothesis)

= c ∗ (a ∗ a−1) (Associativity)

= c ∗ e (Inverse)

= c (Identity)

and hence b = c.

Theorem 1.7. If (G, ∗) is a group, if a, b ∈ G, and if a = a ∗ b, then b = e
where e ∈ G is the unique identity element.

Proof. We have that:

a ∗ b = a (Hypothesis)

= a ∗ e (Identity)

and hence a ∗ b = a ∗ e. By the left-cancellation law, b = e.

Theorem 1.8. If (G, ∗) is a group, if a, b ∈ G, and if a = b ∗ a, then b = e
where e ∈ G is the unique identity element.

Proof. We have that:

b ∗ a = a (Hypothesis)

= e ∗ a (Identity)

and hence b ∗ a = e ∗ a. By the right-cancellation law, b = e.
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Definition 1.3 (Subgroup) A subgroup of a group (G, ∗) is a subset H ⊆ G
such that the restriction of ∗ to H × H yields a group. That is, (H, ∗H) is a
group. �

Theorem 1.9. If (G, ∗) is a group, if e ∈ G is the unique identity, and if
H ⊆ G is a subgroup, then e ∈ H and e is the identity of (H, ∗H).

Proof. Since (H, ∗H) is a group, there is some identity element eH ∈ H. But
then eH ∗H eH = eH . But ∗H is just the restriction of ∗ to H, so eH ∗ eH = eH .
By the previous theorem, eH = e, so e ∈ H and e is the identity of (H, ∗H).

Theorem 1.10. If (G, ∗) is a group, if H ⊆ G is a subgroup, and if a ∈ H,
then a−1 ∈ H.

Proof. Since (H, ∗H) is a group, and since a ∈ H, there is an inverse element
a−1H such that a ∗ a−1H = a−1H ∗ a = eH . But by the previous theorem, eH = e,
so a ∗ a−1H = a−1H ∗ a = e. But (G, ∗) is a group and inverses are unique, so
a−1H = a−1. Hence a−1 ∈ H.

Theorem 1.11. If (G, ∗) is a group, and if H ⊆ G, then H is a subgroup if
and only if H is non-empty, for all a ∈ H it is true that a−1 ∈ H, and for all
a, b ∈ H it is true that a ∗ b ∈ H.

Proof. By the previous two theorems, if H ⊆ G is a subgroup, then it is closed
to group multiplication and inversion. It also non-empty since e ∈ H. In
the reverse direction, suppose H ⊆ G is non-empty and closed to inversion
and multiplication. We need only show that H has an identity element (it
has inverses, and the group operation is associative, so the restriction to H is
associative as well). Since H is non-empty, there is some a ∈ H. But H is closed
to inversion, so a−1 ∈ H. But H is also closed under multiplication, meaning
a ∗ a−1 ∈ H. But a ∗ a−1 = e, and hence e ∈ H. That is, H is a subgroup.

For topology and geometry, two of the most important operations that come
from groups are left-translation and right-translation. These are defined as
follows.

Definition 1.4 (Left-Translation of a Group) Left-translation of a group
(G, ∗) by an element a ∈ G is the function La : G→ G defined by:

La(x) = a ∗ x (2)

That is, each element is translated on the left by a. �

Right-translation is similarly defined.

Definition 1.5 (Right-Translation of a Group) Right-translation of a group
(G, ∗) by an element a ∈ G is the function Ra : G→ G defined by:

Ra(x) = x ∗ a (3)

That is, each element is translated on the right by a. �
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Left-translation and right-translation by the same element may yield different
functions if (G, ∗) is not Abelian (commutative). Regardless, translation is
always a bijection.

Theorem 1.12. If (G, ∗) is a group, if a ∈ G, and if La : G → G is left-
translation by a, then La is bijective.

Proof. First, La is injective. For let x, y ∈ G and suppose La(x) = La(y). By
the definition of left-translation this means a∗x = a∗y. By the left-cancellation
law, x = y, and hence La is injective. It is also surjective. For let y ∈ G and let
x = a−1 ∗ y. Then we have:

La(x) = a ∗ x (Definition)

= a ∗ (a−1 ∗ y) (Substitution)

= (a ∗ a−1) ∗ y (Associativity)

= e ∗ y (Inverse)

= y (Identity)

and hence La(x) = y, so La is surjective. Since La is injective and surjective, it
is bijective.

The same result holds for right-translation. The proof is also a mirror of left-
translation.

Theorem 1.13. If (G, ∗) is a group, if a ∈ G, and if Ra : G → G is right-
translation by a, then Ra is bijective.

Proof. Indeed, Ra is injective. For let x, y ∈ G and suppose Ra(x) = Ra(y).
That is, x ∗ a = y ∗ a. By the right-cancellation law, x = y, and hence Ra is
injective. It is also surjective. For let y ∈ G and let x = y ∗ a−1. Then we have:

Ra(x) = x ∗ a (Definition)

= (y ∗ a−1) ∗ a (Substitution)

= y ∗ (a−1 ∗ a) (Associativity)

= y ∗ e (Inverse)

= y (Identity)

and hence Ra(x) = y, so Ra is surjective. Since Ra is injective and surjective,
it is bijective.

Theorem 1.14. If (G, ∗) is a group, if H ⊆ G is a subgroup, and if a ∈ H,
then La[H] = H. That is, left-translation of a subgroup by an element of the
subgroup results in the subgroup.

Proof. For let x ∈ H and set y = a−1 ∗ x. Since a ∈ H and H is a subgroup,
we have that a−1 ∈ H. Since x ∈ H and H is a subgroup we also have that
a−1 ∗ x ∈ H. Hence y ∈ H. But then:

La(y) = a ∗ (a−1 ∗ x) = (a−1 ∗ a) ∗ x = e ∗ x = x (4)
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and therefore x ∈ La[H]. That is, H ⊆ La[H]. In the reverse direction, let
y ∈ La[H]. Then y = La(x) for some x ∈ H. That is, y = a ∗ x. But
then x = a−1 ∗ y. But a−1 ∈ H and y ∈ H, and hence a−1 ∗ y ∈ H since
H is a subgroup. That is, x ∈ H, and thus La[H] ⊆ H. We conclude that
H = La[H].

Theorem 1.15. If (G, ∗) is a group, if H ⊆ G is a subgroup, and if a ∈ H,
then Ra[H] = H. That is, right-translation of a subgroup by an element of the
subgroup results in the subgroup.

Proof. The proof is a mirrored mimicry of the previous theorem.

This reverses.

Theorem 1.16. If (G, ∗) is a group, if H ⊆ G, if H is non-empty, and if for
all a ∈ H it is true that La[H] = H, then H is a subgroup.

Proof. First note that e ∈ H, where e ∈ G is the unique identity. Since H is
non-empty there is some a ∈ H. But if a ∈ H, then by hypothesis La[H] = H,
and hence a ∈ La[H]. That is, there is some x ∈ H such that La(x) = a, and
hence a = a ∗ x. By the left-cancellation law, x = e and e ∈ H. So H contains
the identity. It also contains inverses. Since e ∈ H and La[H] = H we have
that La(x) = e for some x ∈ H. That is, a ∗ x = e. By the uniqueness of
inverses, x = a−1 so a−1 ∈ H. Finally, H is closed under multiplication since
x ∗ y = Lx(y) for all x, y ∈ H, and hence x ∗ y ∈ H since Lx[H] = H. So H is a
subgroup.

This cannot be relaxed to just some element of H. That is, La[H] = H for
some a ∈ H need not imply H is a subgroup. Take, for a simple example, N
with addition +. This is a subset of Z but not a subgroup, it lacks inverses.
However L0[N] = N is still true, and 0 ∈ N.

2 Homomorphisms

Continuous functions are the main functions of study in topology. Continuity
is solely described by the topologies. For groups we have a set and a binary
operation, so not much to play with. The main functions of study for group
theory should then be functions that respect or preserve the binary operation
in some way. This motivates the definition of group homomorphisms.

Definition 2.1 (Group Homomorphism) A group homomorphism from a
group (G, ∗) to a group (G′, ∗′) is a function ϕ : G → G′ such that for all
a, b ∈ G it is true that ϕ(a ∗ b) = ϕ(a) ∗′ ϕ(b). �

Example 2.1 Define ϕ : Z → Z2 by ϕ(n) = n mod 2. If Z is given integer
arithmetic, and if Z2 is equipped with modular arithmetic, then ϕ is a group
homomorphism. ϕ sends even integers to 0 and odd integers to 1. �

Group homomorphisms preserve many aspects of the group.
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Theorem 2.1. If (G, ∗) and (G′, ∗′) are groups, if ϕ : G → G′ is a group
homomorphism, and if e ∈ G and e′ ∈ G′ are the identities, then ϕ(e) = e′.

Proof. We have:

ϕ(e) = ϕ(e ∗ e) (Identity)

= ϕ(e) ∗′ ϕ(e) (Homomorphism)

and hence ϕ(e) = ϕ(e) ∗′ ϕ(e). By the cancellation law, ϕ(e) = e′.

Theorem 2.2. If (G, ∗) and (G′, ∗′) are groups, if ϕ : G → G′ is a group
homomorphism, and if a ∈ G, then ϕ(a−1) = ϕ(a)−1.

Proof. Since inverses are unique, we need only show that ϕ(a−1) is an inverse
for ϕ(a). We have:

ϕ(a) ∗ ϕ(a−1) = ϕ(a ∗ a−1) (Homomorphism)

= ϕ(e) (Identity)

= e′ (Previous Theorem)

and hence ϕ(a−1) = ϕ(a)−1.

Theorem 2.3. If (G, ∗) and (G′, ∗′) are groups, if ϕ : G → G′ is a group
homormorphism, and if H ⊆ G is a subgroup, then ϕ[H] ⊆ G′ is a subgroup.

Proof. Since H is a subgroup, e ∈ H is true, and hence e′ ∈ ϕ[H] is also true.
Hence ϕ[H] is non-empty. If a′ ∈ ϕ[H], then a′ = ϕ(a) for some a ∈ H. But
H is a subgroup, so a−1 ∈ H and hence ϕ(a−1) ∈ ϕ[H]. But ϕ(a−1) = ϕ(a)−1,
and hence a′−1 ∈ ϕ[H]. Lastly, if a′, b′ ∈ H, then there are a, b ∈ H such that
a′ = ϕ(a) and b′ = ϕ(b). But then a′ ∗ b′ = ϕ(a) ∗ ϕ(b) = ϕ(a ∗ b). Since H
is a subgroup, a ∗ b ∈ H is true, and hence a′ ∗ b′ ∈ ϕ[H]. Therefore ϕ[H] is a
subgroup.

Mimicing topology, the pre-image of a subgroup is also a subgroup.

Theorem 2.4. If (G, ∗) and (G′, ∗′) and groups, if ϕ : G → G′ is a group
homomorphism, and if H ′ ⊆ G′ is a subgroup, then ϕ−1[H ′] ⊆ G is a subgroup.

Proof. Let H = ϕ−1[H ′]. Firstly, the set is non-empty since e′ ∈ H ′, and hence
e ∈ H. Let’s prove H is closed to inversions and products. Let a ∈ H. Then
ϕ(a) ∈ H ′. But H ′ is a subgroup, so ϕ(a)−1 ∈ H ′. But ϕ(a)−1 = ϕ(a−1) and
hence a−1 ∈ H. That is, H is closed to inversion. Lastly, let a, b ∈ H. Then
ϕ(a) ∈ H ′ and ϕ(b) ∈ H ′. But H ′ is a subgroup, so ϕ(a) ∗′ ϕ(b) ∈ H ′. But
ϕ(a)∗′ϕ(b) = ϕ(a∗b) and hence a∗b ∈ H. Thus H = ϕ−1[H ′] is a subgroup.

Unlike topology, this does not reverse. That is, homomorphisms can not be
described by pre-images.
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Example 2.2 Let (Z2, +2) be the group of addition mod 2, and (Z3, +3) be the
group of addition mod 3. Define ϕ : Z2 → Z3 via ϕ(n) = n. The only subgroups
of Z3 are { 0 } and { 0, 1, 2 }. In both cases the pre-image under ϕ is a subgroup
of Z2. However, ϕ is not a homomorphism. Note that ϕ(1 +2 1) = ϕ(0) = 0,
but ϕ(1) +3 ϕ(1) = 1 +3 1 = 2. �

Just like how homeomorphisms tell us when two topological spaces are the
same (topologically), isomorphisms tell us when two groups are the same (alge-
braically).

Definition 2.2 (Group Isomorphism) A group isomorphism from a group
(G, ∗) to a group (G′, ∗′) is a bijective group homomorphism ϕ : G→ G′ such
that ϕ−1 : G′ → G is also a group homomorphism. �

In topology a bijective continuous function need not have a continuous inverse.
Group theorists do not have such worries.

Theorem 2.5. If (G, ∗) and (G′, ∗′) are groups, and if ϕ : G→ G′ is a bijective
group homomorphism, then ϕ−1 is a group homomorphism.

Proof. For let a′, b′ ∈ G′. Since ϕ is bijective, there are a, b ∈ G such that
a′ = ϕ(a) and b′ = ϕ(b). But then, since ϕ is bijective, we also have a = ϕ−1(a′)
and b = ϕ−1(b′). Hence:

ϕ−1(a′ ∗′ b′) = ϕ−1
(
ϕ(a) ∗′ ϕ(b)

)
(Substitution)

= ϕ−1
(
ϕ(a ∗ b)

)
(Homomorphism)

= a ∗ b (Inverse Function)

= ϕ−1(a′) ∗ ϕ−1(b′) (Substitution)

and therefore ϕ−1 is a group homomorphism.

3 Conjugation and Normal Subgroups

Groups need not be Abelian (commutative). The general linear group of in-
vertible n × n matrices serves as the counterexample to the claim, and serves
as an example of a very useful and important non-Abelian group. Conjugation
measures, to some extent, how two elements fail to commute.

Definition 3.1 (Conjugation of a Group) The conjugation of a group (G, ∗)
by an element g ∈ G is the function conjg : G→ G defined by:

conjg(a) = g ∗ a ∗ g−1 (5)

for all a ∈ G. �

Theorem 3.1. If (G, ∗) is an Abelian group, and if g ∈ G, then conjg = idG.
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Proof. For let a ∈ G. Then:

conjg(a) = g ∗ a ∗ g−1 (Definition of conjg)

= g ∗ g−1 ∗ a (Commutativity)

= e ∗ a (Inverse)

= a (Identity)

and hence conjg(a) = a for all a, meaning conjg is the identity function.

Theorem 3.2. If (G, ∗) is a group, if a ∈ G, and if g ∈ G, then:

conjg(a−1) = conjg(a)−1 (6)

Proof. By the uniqueness of inverses, we need only show that conjg(a−1) is an
inverse of conjg(a). We have:

conjg(a−1) ∗ conjg(a) =
(
g ∗ a−1 ∗ g−1

)
∗
(
g ∗ a ∗ g−1

)
(Substitution)

= (g ∗ a−1) ∗ (g−1 ∗ g) ∗ (a ∗ g−1) (Associativity)

= (g ∗ a−1) ∗ e ∗ (a ∗ g−1) (Inverse)

= (g ∗ a−1) ∗ (a ∗ g−1) (Identity)

= g ∗ (a−1 ∗ a) ∗ g−1 (Associativity)

= g ∗ e ∗ g−1 (Inverse)

= g ∗ g−1 (Identity)

= e (Inverse)

By the uniqueness of inverses, conjg(a−1) = conjg(a)−1.

Theorem 3.3. If (G, ∗) is a group, if g ∈ G, and if a, b ∈ G, then:

conjg(a ∗ b) = conjg(a) ∗ conjg(b) (7)

Proof. We have:

conjg(a ∗ b) = g ∗ (a ∗ b) ∗ g−1 (Definition of conjg)

= g ∗ (a ∗ e ∗ b) ∗ g−1 (Identity)

= g ∗ (a ∗ (g−1 ∗ g) ∗ b) ∗ g−1 (Inverse)

= (g ∗ a ∗ g−1) ∗ (g ∗ b ∗ a−1) (Associativity)

= conjg(a) ∗ conjg(b) (Definition of conjg)

and so the theorem is proved.

Theorem 3.4. If (G, ∗) is a group, and if g ∈ G, then conjg : G → G is a
group homomorphism.
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Proof. By the previous theorem conjg(a ∗ b) = conjg(a) ∗ conjg(b) and hence
conjg is a group homomorphism.

Theorem 3.5. If (G, ∗) is a group, if g ∈ G, and if H ⊆ G is a subgroup, then
conjg[H] ⊆ G is a subgroup.

Proof. Since H is a subgroup and conjg : G → G is a group homomorphism,
conjg[H] is a subgroup.

Definition 3.2 (Normal Subgroup) A normal subgroup of a group (G, ∗) is
a subgroup H ⊆ G such that for all g ∈ G it is true that conjg[N ] = N . That
is, for all a ∈ N and for all g ∈ G we have g ∗ n ∗ g−1 ∈ N . �

Note that it is not required that g ∗ n ∗ g−1 = n, merely that conjugation of
an element in the subgroup yields another element of the subgroup. Normal
subgroups are those that are closed under conjugation.

4 Cosets and Quotient Groups

Subgroups can be used to decompose a group into disjoint pieces. That is,
we take the subgroup and then use left-translation by different elements of
the group until every element is covered. This has two uses. First, it gives a
nice partitioning of the group and can be used to prove things like Lagrange’s
theorem for finite groups. Secondly, it yields an equivalence relation which can
then be used to form quotient sets. Under the right conditions the quotient set
can be given a group struct such that the canonical quotient map is a group
homomorphism. First, a definition.

Definition 4.1 (Left-Coset in a Group) The left-coset of a subset A ⊆ G
in a group (G, ∗) with respect to an element a ∈ G is the set La[A], where La

is the left-translation function. �

In most contexts A is actually a subgroup, and we usually label this as H ⊆ G.
Many textbooks then denote the left-coset of H by a as aH. For topological
applications left-translation is a central tool and we usually think of this as a
function, so we’ll stick with La[H].

Theorem 4.1. If (G, ∗) is a group, if H ⊆ G is a subgroup, and if a, b ∈ G,
then either La[H] = Lb[H] or La[H] ∩ Lb[H] = ∅.

Proof. For suppose La[H]∩Lb[H] 6= ∅. That is, there is some c ∈ La[H]∩Lb[H].
Then, by definition of left-translation, there exists x, y ∈ H such that c = a ∗ x
and c = b ∗ y. That is, a ∗ x = b ∗ y. But then a = b ∗ y ∗ x−1. But H is a
subgroup, so y ∗ x−1 ∈ H, and hence a ∈ Lb[H]. Given z ∈ La[H], we have
z = a∗w for some w ∈ H, and therefore z = b∗(y∗x−1∗w). But y∗x−1∗w ∈ H
since H is a subgroup. Thus z ∈ Lb[H], meaning La[H] ⊆ Lb[H]. By a similar
argument it is true that Lb[H] ⊆ La[H] and hence La[H] = Lb[H]. That is,
either La[H] and Lb[H] are disjoint or equal.
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Theorem 4.2. If (G, ∗) is a group, if H ⊆ G is a subgroup, and if Λ is the set:

Λ = {La[H] ⊆ G | a ∈ G } (8)

then Λ partitions G. That is,
⋃

Λ = G and distinct elements of Λ are disjoint.

Proof. By the previous theorem distinct elements of Λ are disjoint. We need
only show that

⋃
Λ = G. Let a ∈ G. Since H is a subgroup, e ∈ H where e ∈ G

is the unique identity element. But then a ∗ e = a, and hence a ∈ La[H]. Thus
a ∈

⋃
Λ. That is, Λ partitions G.

Partitions and equivalence relations are really the same thing. If R is an equiv-
alence relation on X, we get a partition by considering the set of all equivalence
classes of X. That is, the equivalence classes [x] ⊆ X cover the set, and equiva-
lence classes are either identical or disjoint. Conversely, if we have a partition,
we may form an equivalence relation by saying that xRy is true if and only if
x and y belong to the same partition set. Because of this, the left-posets of a
subgroup give us an equivalence relation on a group, meaning we may form the
quotient set, which we denote G/H. It is natural to ask if the quotient set can be
endowed with a group operation, much the way we equipped quotients of topo-
logical spaces with the quotient topology. Unlike topological spaces, where any
quotient set can be given the quotient topology, for the quotient of a group to
be a group itself the subgroup must be normal. If N ⊆ G is a normal subgroup,
we may define:

La[N ]∗̃Lb[N ] = La∗b[N ] (9)

Since N is closed under conjugation, this is a well-defined operation. Almost
by construction, the quotient map q : G→ G/N defined by q(a) = [a] = La[N ]
is a group homomorphism. That is:

q(a ∗ b) = La∗b[N ] = La[N ]∗̃Lb[N ] = q(a)∗̃q(b) (10)

so q is a group homomorphism.
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