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1 Topological Groups

Now we introduce some topology into our algebra.

Definition 1.1 (Topological Group) A topological group is an ordered triple
(X, τ, ∗) where (X, τ) is a topological space and (X, ∗) is a group such that
the functions m : X ×X → X and η : X → X defined by:

m(x, y) = x ∗ y (1)

η(x) = x−1 (2)

are continuous (here X ×X is given the product topology). That is, the group
operations are continuous functions. �

Example 1.1 The real line with addition is a topological group. The addition
of real numbers is indeed a continuous operation, and the inverse operation is
negation: x 7→ −x. �

Example 1.2 More generally, Rn as a vector space with vector addition be-
comes a topological group when endowed with the standard Euclidean topol-
ogy. �

Example 1.3 The circle S1 with the subspace topology and the rotation op-
eration is a topological group. That is, Given points eiθ, eiφ ∈ S1, we define
eiθ ∗ eiφ = ei(θ+φ). This operation is continuous with respect to the subspace
topology the circle inherits from R2, giving us a topological group. �

Example 1.4 The integers Z with the subspace topology from R and addition
form a topological group. Note that the subspace topology on Z is also the
discrete topology. �

Example 1.5 More generally, if (X, ∗) is any group, then (X, P(X), ∗) is a
topological group. The product topology on X×X is also the discrete topology,
and hence any function f : X ×X → X is continuous. Similarly, any function
g : X → X is continuous. So in particular the multiplication and inversion
operations are continuous and (X, P(X), ∗) is a topological group. �
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Example 1.6 Going the other way, if (X, ∗) is any group, and if τ = { ∅, X }
is the indiscrete topology, then (X, τ, ∗) is a topological group. Since τ is the
indiscrete topology, any function into X is continuous, so in particular multi-
plication and inversion are continuous. �

Example 1.7 If X = R and τ = { ∅, R } is the indiscrete topology, then by
the previous example (R, τ, +) is a topological group. Note that it is a non-
Hausdorff topological group. Topological groups need not satisfy any of the
separation properties. �

Theorem 1.1. If (X, τ) is a topological space, and if (X, ∗) is a group, then
(X, τ, ∗) is a topological group if and only if the function f : X×X → X defined
by f(x, y) = x ∗ y−1 is continuous.

Proof. The function f(x, y) = x∗y−1 can be seen as a combination of multiplica-
tion and inversion. If (X, τ, ∗) is a topological group, then this function is con-
tinuous. In the other direction, if this function is continuous, then setting x = e,
the identity, we have f(e, y) = e ∗ y−1 = y−1, and this is a continuous function
of y, meaning inversion is continuous. But then x∗y = x∗ (y−1)−1 = f(x, y−1),
which is the composition of continuous functions, so multiplication is continu-
ous. Hence (X, τ, ∗) is a topological group.

Theorem 1.2. If (X, τ, ∗) is a topological group, and if a ∈ X, and if La :
X → X is left-translation of X by a, then La is a homeomorphism.

Proof. We have already proved that left-translation in a group is bijective. Let
us show that it is continuous. But La(x) = a∗x is the restriction of m : X×X →
X, defined by m(x, y) = x ∗ y, to the subset { a } ×X. But the restriction of
a continuous function to subspace is continuous, and hence La : X → X is
continuous. The inverse function is given by L−1

a = La−1 since:

(La ◦ La−1)(x) = La
(
La−1(x)

)
(Definition of Composition)

= La(a−1 ∗ x) (Definition of La−1)

= a ∗ (a−1 ∗ x) (Definition of La)

= (a ∗ a−1) ∗ x (Associativity)

= e ∗ x (Inverse)

= x (Identity)

And hence La ◦La−1 is the identity function. Similarly, La−1 ◦La is the identity.
So the inverse of left-translation is another left-translation, which is continuous.
Hence La is a homeomorphism.

Two immediate results are often of equal use.

Theorem 1.3. If (X, τ, ∗) is a topological group, if a ∈ X, and if La : X → X
is left-translation by a, then La is an open map.

Proof. Left-translation is a homeomorphism, so it is also an open map.
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Theorem 1.4. If (X, τ, ∗) is a topological group, if a ∈ X, and if La : X → X
is left-translation by a, then La is an closed map.

Proof. Left-translation is a homeomorphism, so it is also an closed map.

Theorem 1.5. If (X, τ, ∗) is a topological group, if a ∈ X, and if Ra : X → X
denotes right-translation by a, then Ra is a homeomorphism. In particular it is
both an open map and a closed map.

Proof. The proof is similar to that for left-translation.

Conjugation is also a homeomorphism, but it is also a group isomorphism.
Functions that are both continuous and homomorphisms are one of the main
objects of study in topological groups.

Definition 1.2 (Topological Group Homomorphism) A topological group
homomorphism from a topological group (X, τX , ∗X) to a topological group
(Y, τY , ∗Y ) is a function ϕ : X → Y such that ϕ is continuous with respect
to the topologies and also a group homomorphism with respect to the group
operations. �

For groups, a bijective homomorphism automatically yields a group isomorphism
since the inverse function will be a group homomorphism. Continuity lacks such
niceties. We must be careful in our defining of topological group isomorphisms.

Definition 1.3 (Topological Group Isomorphism) A topological group iso-
morphism from a topological group (X, τX , ∗X) to another topological group
(Y, τY , ∗Y ) is a function ϕ : X → Y such that ϕ is a homeomorphism with re-
spect to the topologies and also a group isomorphism with respect to the group
operations. �

Note we did not just define this as a continuous group isomorphism since we
would like the inverse function to be continuous as well. Hence we defined this
as a homeomorphic group isomorphism.

Theorem 1.6. If (X, τ, ∗) is a topological group and if g ∈ X, then conjg
is a topological group isomorphism, where conjg : X → X is the conjugation
function.

Proof. We have already proven that conjugation is a group isomorphism. It is
also a homeomorphism since:

conjg(a) = g ∗ a ∗ g−1 (Definition of conjg)

= g ∗ (a ∗ g−1) (Associativity)

= Lg(a ∗ g−1) (Definition of Lg)

= Lg
(
Rg−1(a)

)
(Definition of Rg−1)

= (Lg ◦Rg−1)(a) (Definition of Composition)

And hence conjugation is the composition of a left-translation and a right-
translation, which is the composition of homeomorphisms, which is therefore a
homeomorphism.
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Left-translations, right-translations, and conjugations allow us to show that
topological groups have a lot of nice properties. For one thing, topological
groups are homogeneous.

Definition 1.4 (Homogeneous Topological Space) A homogeneous topo-
logical space is a topological space (X, τ) such that for all x, y ∈ X there is a
homeomorphism f : X → X such that f(x) = y. �

This means that every point in the space looks like every other point. Euclidean
spaces are examples of homogeneous topological spaces, as are all connected
topological manifolds. Topological groups are also homogeneous.

Theorem 1.7. If (X, τ, ∗) is a topological group, then (X, τ) is a homogeneous
topological space.

Proof. For let a, b ∈ X and define f : X → X by f(x) = b ∗ x ∗ a−1. Then f
is a homeomorphism, being the composition of left and right-translations. But
also:

f(a) = b ∗ a ∗ a−1 = b ∗ e = b (3)

And hence (X, τ) is a homogeneous topological space.

Homogeneity can be used to prove a lot of nice properties. For one, if there are
nice local topological properties around the origin, then these properties might
become global by using translations. Let’s motivate this by example.

Definition 1.5 (Kolmogorov Topological Space) A Kolmogorov topolog-
ical space is a topological space (X, τ) such that for all x, y ∈ X there is an
open set U ∈ τ such that either x ∈ U and y /∈ U , or x /∈ U and y ∈ U . �

This is the weakest of the separation properties, weaker than the Hausdorff and
Frechét properties. A Kolmogorov space need not be Hausdorff or Frechét.

Example 1.8 Define τ on N to be:

τ = {Zn ⊆ Z | n ∈ N } ∪ {N } (4)

This is a topology since the sets are nested, so the union and intersection prop-
erties are satisfied. It is Kolmogorov. Given n,m ∈ N, n 6= m, choose U = Zk+1

where k = min(m, n). Then U is open can contains one one of m and n, but
not both. The space is not Frechét since no point can be separated from 0. �

What’s remarkable is that Kolmorogov topological groups are Frechét, Haus-
dorff, regular, and completely regular. We’ll prove the first two of the assertions.
First we’ll need a little lemma.

Theorem 1.8. If (G, ∗) is a group, if A ⊆ G, if x, y ∈ G, if x ∈ A and y /∈ A,
and if B = Lx

[
Ry[A−1]

]
, where:

A−1 = { a−1 ∈ G | a ∈ A } (5)

then x /∈ B and y ∈ B.
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Proof. First, y ∈ B since x ∈ A, and hence x−1 ∈ A−1, so Lx
(
Ry(x−1)

)
∈ B.

But:
Lx

(
Ry(x−1)

)
= x ∗ x−1 ∗ y = e ∗ y = y (6)

and therefore y ∈ B. Second, x /∈ B. For if x ∈ B, then x = x∗a−1 ∗ y for some
a ∈ A. But then by the cancellation law, a−1 ∗ y = e. But inverses are unique,
meaning y = a. But then y ∈ A, which is a contradiction. So x /∈ B and y ∈ B,
completing the proof.

Theorem 1.9. If (X, τ, ∗) is a topological group, and if η : X → X is defined
by η(x) = x−1, then η is a homeomorphism.

Proof. η is continuous since (X, τ, ∗) is a topological group. It is also bijective.
It is injective since x−1 = y−1 implies x = y since inverses are unique. It
is surjective since (X, ∗) is a group, and hence every element has an inverse.
Lastly, the inverse is continuous since the inverse of η is η. That is:

η2(x) = (η ◦ η)(x) (7)

= η
(
η(x)

)
(8)

= η(x−1) (9)

= (x−1)−1 (10)

= x (11)

And hence η = η−1. But then η−1 is continuous, so η is a homeomorphism.

Theorem 1.10. If (X, τ, ∗) is a topological group, and if (X, τ) is a Kol-
mogorov topological space, then it is a Frechét topological space.

Proof. For let x, y ∈ X. Since (X, τ) is a Kolmogorov space, there is a U ∈ τ
such that either x ∈ U and y /∈ U , or x /∈ U and y ∈ U . Suppose the former (the
proof is symmetric). Let V = (Lx ◦Ry)[U−1] where:

U−1 = { a−1 ∈ X | a ∈ U } (12)

Then U−1 is the image of the inversion function η : X → X defined by η(x) =
x−1. Since η is a homeomorphism, it is an open mapping. Since U is open, U−1

is also open. Hence V is also open since left-translations and right-translations
are open mappings as well. By a previous theorem, since x ∈ U and y /∈ U , we
have x /∈ V and y ∈ V. Hence (X, τ) is a Frechét space.

The Hausdorff property will be implied as well.

Theorem 1.11. If (X, τ) is a topological space, then it is Hausdorff if and only
if the set:

∆ = { (x, x) ∈ X ×X | x ∈ X } (13)

is closed with respect to the product topology.
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Proof. First, suppose ∆ is closed with respect to the product topology. Let’s
show that (X, τ) is Hausdorff. Let x, y ∈ X with x 6= y. Since x 6= y we have
that (x, y) /∈ ∆, meaning (x, y) ∈ X ×X \∆. But since ∆ ⊆ X ×X is closed,
X×X \∆ is open. Then from the definition of the product topology, there must
be open sets U , V ∈ τ such that U×V ⊆ X×X \∆ and (x, y) ∈ U×V. But also
U ∩ V = ∅. For if z ∈ U ∩ V, then (z, z) ∈ X ×X \∆, which is a contradiction
since (z, z) ∈ ∆. Hence (X, τ) is Hausdorff. In the other direction, suppose
(X, τ) is a Hausdorff space and let’s show that ∆ is closed. To do this we prove
that X ×X \∆ is open. Let (x, y) ∈ X ×X \∆. Then x 6= y. But (X, τ) is
Hausdorff so there are open sets U ,V ∈ τ such that x ∈ U , y ∈ V, and U∩V = ∅.
But then U × V is an open subset of X ×X that contains (x, y), and since the
sets are disjoint the product is contained entirely inside of X ×X \∆. Hence,
∆ is closed.

Theorem 1.12. If (X, τ, ∗) is a topological group, and if (X, τ) is a Kol-
mogorov space, then it is Hausdorff.

Proof. We have proven that Kolmogorov topological groups are Frechét, and
hence { e } is closed, where e is the unique identity element of (X, ∗). But
since (X, τ, ∗) is a topological group, the function f : X ×X → X defined by
f(x, y) = x ∗ y−1 is continuous. But the set:

∆ = { (x, x) ∈ X ×X | x ∈ X } (14)

is the pre-image of the set { e } by f . Since f is continuous and { e } is closed,
∆ is closed as well. Since the diagonal is closed, (X, τ) is Hausdorff.

The idea around Kolmogorov spaces allow us to define the notion of points be-
ing topologically distinguishable. Two points are topologically indistinguishable
if they belong to all of the same open sets. That is, the topology can’t tell them
apart. This yields an equivalence relation on the points in a topological space,
and the resulting quotient is the Kolmogorov quotient. It always yields a Kol-
mogorov topological space. What’s more, a topological space is a Kolmogorov
space if and only if it is homeomorphic to it’s Kolmogorov quotient.

In the context of groups there’s a bit more to it. If (X, τ, ∗) is a topological
group, and if e ∈ X is the unique identity, then Clτ ({ e }) is a closed normal
subgroup. That is, it is a closed subset as far as the topology is concerned, but
it is also a normal subgroup. The points in the closure of e are precisely the
ones that are topologically indistinguishable from the identity. The equivalence
relation induced by being topologically indistinguishable partitions the space
into the cosets of Clτ ({ e }) (viewed as a normal subgroup). The quotient space
is hence also a topological group, and since it is Kolmogorov, it is automatically
Frechét and Hausdorff. So every topological group has a canonical Hausdorff
topological group associated to it. Because of this many authors require topo-
logical groups to have, as part of the definition, the Kolmogorov or Frechét or
Hausdorff properties.
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