Math 38. Graph Theory.

Solutions to Homework 1.

Sec 1.1, \# 10. It is true. Let G be a simple disconnected graph. Take $u, v \in V(G)$ so that there is no u, v-path in G. In particular, we have $u v \notin E(G)$, and so $u v \in E(\bar{G})$.
To show that \bar{G} is connected, it is enough to show that for every vertex w, there is a path from u to w in \bar{G}. To see this, take an arbitrary vertex w. If $u w \in E(\bar{G})$ we are done. Otherwise, the fact that $u w \in E(G)$ and that there is no u, v-path in G forces $v w \notin E(G)$, that is, $v w \in E(\bar{G})$. But now the edges $u v$ and $v w$ give a path from u to w in \bar{G}.

Sec 1.1, \# 13. Yes. This is solved in example 1.3.8.
Sec 1.1, \# 16. No. Their complements are $C_{4}+C_{4}$ (a disjoint union of two 4 -cyles) and C_{8}, respectively, which are not isomorphic.

Sec 1.1, \# 29. Consider mutual acquaintances as edges of a 6 -vertex graph G (and so mutual strangers are edges of $\bar{G})$. The problem asks to show that G has either a clique of size 3 or an independent set of size 3 .

Take any $v \in G$. Among the remaining 5 vertices, either we have at least 3 adjacent to v or at least 3 non-adjacent to v, by the pigeonhole principle. We can assume without loss of generality that at least 3 are adjacent to v (if we are in the other case, we argue similarly using \bar{G} instead of G), that is, $v u_{1}, v u_{2}, v u_{3} \in E(G)$. If one of $u_{1} u_{2}, u_{2} u_{3}, u_{1} u_{3}$ is in $E(G)$, then G has a triangle, consisting of the two endpoints of this edge together with v. If not, then G has an independent set $\left\{u_{1}, u_{2}, u_{3}\right\}$.

Sec 1.1, \# 30. Let a_{i} denote the i-th column of the adjacency matrix A. Then the entry in row i and column i of A^{2} equals $a_{i}^{T} a_{i}$, which is the number of ones in a_{i}, which is the degree of the i-th vertex v_{i}.
Similarly, letting b_{i}^{T} denote the i-th row of the incidence matrix M, the entry in row i and column i of $M M^{T}$ equals $b_{i}^{T} b_{i}$, which is the number of ones in b_{i}, which is again degree of the v_{i}.
By a similar argument, the entry in position i, j of A^{2} is the number of common neighbors of v_{i} and v_{j}, which equals the number of walks of length 2 from v_{i} to v_{j}.
The entry in position i, j of $M M^{T}$ is the number of edges between v_{i} and v_{j}, which must be 0 or 1 for a simple graph.

