
Math 38. Graph Theory.

Solutions to Homework 2.

Sec 1.2, # 8. Km,n is Eulerian iff both m and n are even. This is because Km,n has m vertices of degree n
and n vertices of degree m, and we have proved in class that a connected graph is Eulerian
iff all its vertices have even degree.

Sec 1.2, # 10. a) True. The number of edges of a bipartite graph equals the sum of the degrees of the
vertices in one of the two sets of the bipartition. Since the graph is Eulerian, all these degrees
are even, and thus so is their sum.

b) False. A triangle together with an isolated vertex gives an Eulerian graph with 4 vertices
and 3 edges. It is also possible to construct a connected counterexample by taking a triangle
and a square with a shared vertex, giving an Eulerian graph with 6 vertices and 7 edges.

Sec 1.2, # 17. We show that there is a path between any vertex and the vertex corresponding to the per-
mutation 123 . . . n. The proof is by induction on n.

The base case n = 1 is trivial, since the graph only has one vertex.

Now, assuming the result holds for n−1, we will prove it for n. Given a permutation a1 . . . an,
if n is not in the last position, then we can perform adjacent transpositions to move n to the
last position. This gives a path in Gn from a1 . . . an to a permutation of the form b1 . . . bn−1n.
By the induction hypothesis, there is a path in Gn−1 between b1 . . . bn−1 and 12 . . . (n − 1),
and the same operations give a path in Gn from b1 . . . bn−1n to 123 . . . n. By concatenating
the two paths, it follows that there is a walk (and therefore a path, as we showed in class)
from a1 . . . an to 123 . . . n.

Sec 1.2, # 29. First we prove the following property about G:

Lemma. If uv, vw,wx ∈ E(G), then ux ∈ E(G).

Proof of Lemma. Consider the induced subgraph G[{u, v, w, x}]. If this subgraph contained
no more edges (other than uv, vw,wx), then it would be a copy of P4, contradicting the
hypothesis. So, it must contain other edges. If it contained uw or xv, then it would have an
induced copy of C3, again a contradiction. Thus, it must contain the edge ux.

Now we prove that G is bipartite by showing that it contains no odd cycle. Suppose for
contradiction that G has an odd cycle. Take such a cycle with the smallest number of edges,
say ℓ. Note that ℓ ̸= 1 because G is simple, and that ℓ ̸= 3 because G contains no C3 as an
induced subgraph. Thus, ℓ ≥ 5. But if u, v, w, x are four consecutive vertices in this cycle,
then ux ∈ E(G) by the lemma, and so we could replace the piece uvwx of the cycle with ux
to get a cycle of length ℓ− 2, which is a contracition with the choice of ℓ to be the smallest.
It follows that G is bipartite. Let X ∪ Y be a partition of its vertices into independent sets.

To show that G is complete bipartite, we need to show that given any u ∈ X and v ∈ Y , we
have uv ∈ E(G). Take a shortest path from u to v, which exists because G is connected. Let
m be the length of this path, and note that m is odd because the path alternates between
X and Y . If m ≥ 3, let the first 4 vertices of the path be u, x1, x2, x3. By the lemma,
ux3 ∈ E(G). But then, deleting x1 and x2 from the path we would get a shorter uv-path,
which contradicts minimality of m. Thus, we must have m = 1, and so uv ∈ E(G).



Sec 1.2, # 38. By induction on the number of vertices n.

If n = 1, then the graph consists of a loop, which is a cycle of length 1.

Let now n > 1. Assuming the result holds for n − 1, let us prove it for n. If all the vertices
have degree ≥ 2, then G contains a cycle by Lemma 1.2.25. If some vertex has degree 1 or
0, then by deleting one such vertex we get a graph with n − 1 vertices and (at least) n − 1
edges. By induction hypothesis it contains a cycle, which is also a cycle in the original graph.

Sec 1.3, # 1. True. Suppose not. Then u and v are in different components. Let H be the component
containing u. Then H is a graph with only one vertex of odd degree, in contradiction with
Corollary 1.3.5.

Sec 1.3, # 12. Suppose uv is cut-edge. Removing it leaves two components, one containing u and one
containing v. But then each of these components would be a graph with only one vertex of
odd degree, in contradiction with Corollary 1.3.5.

For the second part, we construct a 2k+1-regular simple graph having a cut-edge. Start with
the hypercube Q2k+1, and take k edges xiyi ∈ E(Q2k+1) for 1 ≤ i ≤ k so that all 2k endpoints
are different. Add a new vertex u, and replace each edge xiyi above with two edges xiu and
yiu. At this point, all vertices have degree 2k + 1 except for u, which has degree 2k. Call
this graph G. Now take two disjoint copies of G, and add an edge connecting the vertices of
degree 2k in each copy. This is then a cut-edge, and the resulting graph is 2k + 1-regular.

Sec 1.3, # 32. Consider the map φ from simple even graphs with vertex set [n] to simple graphs with vertex
set [n− 1] obtained by deleting the vertex n. Then φ is a bijection, since every simple graph
H with vertex set [n − 1] has exactly one preimage, namely, the graph obtained from H
by adding a new vertex n, and adding one edge between vertex n and each vertex of H of
odd degree. The resulting graph G is even, and it is the only one with the property that
φ(G) = H.

The number of simple graphs with vertex set [n − 1] is 2(
n−1
2 ), because for each pair of

vertices, we can choose to include an edge between them or not, giving
(
n−1
2

)
independent

choices. Since φ is a bijection between this set and the set of even graphs with vertex set [n],
the two sets have the same cardinality.
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