
Math 38. Graph Theory.

Solutions to Homework 4.

2.1.15. The contrapositive of Thm 2.1.11 says that if diam(Ḡ) > 3, then diam(G) < 3. So, if a simple
graph has diameter ≥ 4, then its complement has diameter ≤ 2.

2.1.23. Let n be the total number of vertices, and let m be the number of vertices of degree k (so
n−m is the number of vertices of degree 1).

The sum of the degrees of all the vertices is then mk + (n−m) = 2e(T ) = 2n− 2, using the
degree-sum formula and the fact that trees have n− 1 edges. It follows that

n = 2 + (k − 1)m.

Finally, we show that each such value of n, where m can be chosen to be any nonnegative
integer, is possible. For m = 0, take the tree with 2 vertices and 1 edge. For m > 0, consider
a path with vertices v1, . . . , vm, where each of v1 and vm is adjacent to k − 1 additional
vertices, and each of v2, . . . , vm−1 is adjacent to k − 2 additional vertices. Such a tree has
n = 2 + (k − 1)m vertices.

2.1.27. Forward direction: If there is a tree with vertex degrees d1, . . . , dn, then, by the degree-sum
formula, ∑

di = 2e(T ) = 2n− 2,

using the fact that trees have n− 1 edges.

Backward direction: Use induction on n. For n = 2, the only way to have d1 + d2 = 2 is with
d1 = d2 = 1. The tree with one edge has these degrees.

Let n > 2, and assume the statement is true for smaller values of n. The fact that
∑

di =
2n−2 shows that n <

∑
di < 2n. The first inequality implies that there is some di > 1, while

the second inequality implies that there is some dj = 1. Without loss of generality, assume
that d1 > 1 and dn = 1. Let d′1 = d1 − 1, and d′k = dk for 2 ≤ k ≤ n− 1. Then

n−1∑
i=1

d′i = 2(n− 1)− 2,

and all the d′i are positive, so we can apply the induction hypothesis to conclude that there
is a tree with vertex degrees d′1, . . . , d

′
n−1. Adding an edge between the vertex of degree d′1

and a new vertex, we get a tree with degrees d1, . . . , dn as desired.

2.1.32. e cut-edge ⇒ e belongs to every spanning tree: A spanning tree of G not containing e would
be a spanning tree of G− e. But such a spanning tree cannot exist because G− e is discon-
nected, since by assumption e is a cut-edge.

e belongs to every spanning tree ⇒ e cut-edge: Let us prove the contrapositive. If e is not a
cut-edge, then G − e is connected, so it has a spanning tree by Corollary 2.1.5(c). Such a



spanning tree would also be a spanning tree of G, since it has the same vertex set, and it
would not contain e.

e loop ⇒ e belongs to no spanning tree: A loop is a cycle of length 1, but trees are acyclic,
so e cannot be in any spanning tree.

e belongs to no spanning tree ⇒ e loop: Let us prove the contrapositive. If e is not a loop,
we can construct a spanning tree containing e as follows. Starting with the graph with vertex
set V (G) and edge set {e}, repeat this process: if the graph is disconnected, add an edge
of G between two of the components. Such an edge always exists because G is connected,
and adding it does not create a cycle. We repeat the process until the resulting graph is
connected. We obtain a subgraph of G that is connected and acyclic (that is, a tree) with
vertex set V (G), so it is a spanning tree of G containing e.

2.2.1. In this problem we use the fact that the vertices not appearing in the Prüfer code are precisely
the leaves of the tree.

(a) Only the star K1,n−1, because such trees must have n− 1 leaves.

(b) Trees with exactly n−2 leaves. These consist of an edge uv together with with i additional
vertices adjacent to u and n− i− 2 additional vertices adjacent to v, where 1 ≤ i ≤ n− 3.

(c) Such a tree must have 2 leaves, and all other vertices must have degree 2, so it must be a
path.

2.2.7. Fix an edge of Kn, and let x be the number of spanning trees of Kn that contain that edge.
Then the number we are trying to find, that is, the number of spanning trees of Kn that do
not contain that edge, is nn−2 − x, since, by Cayley’s formula, the total number of spanning
trees of Kn is nn−2.

Let M be the number of pairs (T, e) where T is a spanning tree of Kn and e is an edge of T .
We find two formulas for M . On the one hand, M = nn−2(n− 1), since we can first choose a
tree T in nn−2 ways (by Cayley’s formula) and then choose an edge of the tree in n− 1 ways
(because each tree has n− 1 edges). On the other hand, M =

(
n
2

)
x, since we can first choose

an edge of Kn in
(
n
2

)
ways, and then choose a spanning tree containing that edge.

Equating the two formulas for M and solving for x, we get that

x =
nn−2(n− 1)(

n
2

) = 2nn−3,

and so the number of spannning trees that do not contain a given edge is nn−2 − 2nn−3 =
(n− 2)nn−3.

2.2.8. a) Direct argument: These are paths, where the vertices have labels from the set [n]. We
have n! ways to assign labels to the vertices, but such assignments count each labeled path
twice, since reversing the labels produces the same labeled path. Thus, the number of such
trees is n!/2.

Using Prüfer code: The Prüfer code of such trees has n − 2 different entries. We have n
choices for the first entry, n − 1 for the second..., and finally 3 for the last entry. Thus, the
number of such trees is n(n− 1)(n− 2) · · · 3 = n!/2.
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b) Direct argument: These trees consist of an edge uv together with with i additional vertices
adjacent to u and n− i− 2 additional vertices adjacent to v, where 1 ≤ i ≤ n− 3. The pair
{u, v} can be chosen in

(
n
2

)
ways. Then, the neighbors of u can be any subset of the remaining

n − 2 vertices, except for the empty subset and for the whole set. Thus, there are 2n−2 − 2
choices for the neighbors of u, and each such choice determines the neighbors of v as well. In
total, there are

(
n
2

)
(2n−2 − 2) = n(n− 1)(2n−3 − 1) such trees.

Using Prüfer code: The Prüfer code for such trees contains exactly two values. We have
(
n
2

)
ways to choose these two values, say {u, v}. After these values are chosen, we can choose in
which among the n−2 positions of the Prüfer code to put u, and then put v in the remaining
positions. The choice of positions for u can be any proper (i.e. other than empty or the
whole set) subset of the n− 2 positions, so there are again 2n−2 − 2 choices, giving a total of(
n
2

)
(2n−2 − 2) trees.
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