Math 38. Graph Theory.

Solutions to Homework 6.

3.1.5. Let S be a maximum independent set. We claim that every vertex of G is either in S, or it is adjacent to a vertex in S. Indeed, if this was not the case for some vertex, then we could add that vertex to S to get a larger independent set, contradicting the fact that S was maximum. It follows that

$$
V(G) \subseteq \bigcup_{v \in S}(N(v) \cup\{v\})
$$

Using that $|N(v) \cup\{v\}| \leq \Delta(G)+1$ for any v, we get

$$
n(G)=|V(G)| \leq \sum_{v \in S}|N(v) \cup\{v\}| \leq|S|(\Delta(G)+1)=\alpha(G)(\Delta(G)+1) .
$$

3.1.9. Let M be a maximal matching of G, and let M^{\prime} be a maximum matching, so that $\left|M^{\prime}\right|=$ $\alpha^{\prime}(G)$. By Lemma 3.1.9, the components of $M \triangle M^{\prime}$ are alternating paths and even cycles. If such a component consisted of a single edge in $M^{\prime} \backslash M$, then that edge could be added to M to create another matching, contradicting the maximality of M.

Thus, all the components of $M \triangle M^{\prime}$ are alternating paths of length at least 2, or even cycles. In any such component, the number of edges in $M^{\prime} \backslash M$ is at most twice the number of edges in $M \backslash M^{\prime}$. It follows that $\left|M^{\prime}\right| \leq 2|M|$, and so $|M| \geq\left|M^{\prime}\right| / 2=\alpha^{\prime}(G) / 2$.
3.1.28. This graph is bipartite, since we can explicitly partition the vertices into two independent sets X and Y, which have the same size. In the picture below, the vertices in X are blue, and the ones in Y are black.

By Hall's theorem (Thm 3.1.11), to show that this graph has no perfect matching (equivalently, no matching that saturates X), it is enough to find a subset $S \subseteq X$ with $|N(S)|<|S|$. The set S of red circled vertices in the graph satisfies $|S|=11$ and $|N(S)|=10$.
4.1.5. We will show that if $x \in V\left(G^{\prime}\right)$, then $G^{\prime}-x$ is connected. Let $u, v \in V\left(G^{\prime}-x\right)$. We want to find a u, v-path in $G^{\prime}-x$. Let P be a u, v-path in G. If x is not a vertex in P, then we are done. Otherwise, let y be the vertex preceding x in P (in the direction from u to v) and let z be the vertex following x. Since $d_{G}(y, z) \leq 2$, we have that $y z \in E\left(G^{\prime}\right)$. Replacing $y x$ and $x z$ in P with $y z$ we obtain a u, v-path in $G^{\prime}-x$.

