Math 38. Graph Theory.

Solutions to Homework 7.

4.1.10. By Theorem 4.1.11, we must have $\kappa(G)=\kappa^{\prime}(G)=1$. Thus, G has a cut-edge, say $u v$. Let H be the component of $G-e$ that contains u. Since G is 3 -regular, u has two more neighbors (other than v), say x and y. Since $d(x)=3, H$ must have at least 4 vertices, namely x and its three neighbors.

Let $m \geq 4$ be the number of vertices of H, and let $e(H)$ be its number of edges. By the degree-sum formula, $2 e(H)=3 m-1$, since all vertices of H other than u have degree 3 , and u has degree 2 in H. This formula implies that m is odd, and so $m \geq 5$. Additionally, if $m=5$, the two vertices in H other than u, x, y must be connected to each other and to x, y in order to have degree 3 .

The same argument applies to the component of $G-e$ that contains v. Thus, G must have at least 10 vertices.

Here is a 3 -regular graph with 10 vertices having connectivity 1 :

By the above argument, it is the smallest one.
4.1.11. The proof is almost the same as that of Theorem 4.1.11. Let S be a minimum vertex cut. The fact that every $v \in S$ must have at least a neighbor in each of H_{1} and H_{2} still holds. So does the fact that v cannot have two neighbors in H_{1} and two neighbors in H_{2}, since $\Delta(G) \leq 3$. Thus, for each $v \in S$, if v has only one edge to H_{1}, we delete it; else, v has only one edge to H_{2}, so we delete that one. This gives an edge cut of size $|S|=\kappa(G)$.
4.1.15. The Petersen graph G is 3-regular. By Theorem 4.1.11, $\kappa(G)=\kappa\left(G^{\prime}\right)$. Thus, to show that G is 3-connected, it suffices to show that $\kappa^{\prime}(G) \geq 3$, that is, G has no edge cut of size 2 or less. Clearly, G has no cut-edge. Suppose for contradiction that it has an edge cut $[S, \bar{S}]$ of size 2 . Then, by Prop 4.1.12,

$$
2=|[S, \bar{S}]|=\sum_{v \in S} d(v)-2 e(G[S])=3|S|-2 e(G[S]) .
$$

In particular, this implies that $|S|$ is even. Also, by switching S with \bar{S} if necessary, we can assume without loss of generality that $|S| \leq|\bar{S}|=10-|S|$, so $|S| \leq 5$.
If $|S|=2$, then the above formula would imply $e(G[S])=2$, so G would have a multiple edge, which we know is not true. So, the only case left is $|S|=4$, which implies $e(G[S])=5$. This means that $G[S]$ is the complete graph K_{4} (which has 6 edges) minus an edge. But then $G[S]$ would have a triangle, which contradicts the fact that the Petersen graph has no triangles (as a triangle would require three pairwise-disjoint 2 -element subsets of [5]).
4.2.1. We know that $\kappa(u, v) \leq 3$, because deleting the vertices x, y, z (see picture) separates u from v. On the other hand, $\kappa(u, v) \geq \lambda(u, v) \geq 3$, because there are 3 pairwise internally disjoint u, v-paths, drawn in red. We conclude that $\kappa(u, v)=3$.

We know that $\kappa^{\prime}(u, v) \leq 5$, because deleting the edges $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}$ (see picture) disconnects u from v. On the other hand, $\kappa^{\prime}(u, v) \geq \lambda^{\prime}(u, v) \geq 5$, because there are 5 pairwise edge-disjoint u, v-paths, drawn in red and blue. We conclude that $\kappa^{\prime}(u, v)=5$.

4.2.4. This is false. Here is a counterexample. The graph below is 2 -connected, and $P=u a b v$ is a u, v-path, but there is no u, v-path Q internally disjoint from P.

4.3.2. Using the Ford-Fulkerson Algorithm, we get the flow f drawn below:

Its value is $\operatorname{val}(f)=17$. Additionally, it is a maximum flow because, letting S be the red vertices, tha capacity of the resulting source/sink cut is $\operatorname{cap}(S, \bar{S})=3+4+5+2+3=17$, which agrees with the value of the flow f.
4.3.10. For every graph G, the inequality $\alpha^{\prime}(G) \leq \beta(G)$ holds because a vertex can't cover two edges of a matching. Now let G be an X, Y-bipartite graph. We will prove that $\alpha^{\prime}(G) \geq \beta(G)$.
Let D be the network whose nodes are $V(G) \cup\{s, t\}$, and whose edges are

$$
\begin{cases}s \rightarrow x & \text { for each } x \in X, \\ x \rightarrow y & \text { for each } x \in X, y \in Y \text { such that } x y \in E(G), \\ y \rightarrow t & \text { for each } y \in Y\end{cases}
$$

All the edges have capacity 1 .
First, let us show that $\alpha^{\prime}(G)$, which is the maximum size of a matching in G, equals the maximum value of a flow in D. This is because a matching M with m edges, say $x_{i} y_{i} \in M$ for $1 \leq i \leq m$ (where $x_{i} \in X$ and $y_{i} \in Y$), determines a flow f of value m by letting $f\left(s x_{i}\right)=1$, $f\left(x_{i} y_{i}\right)=1$ and $f\left(y_{i} t\right)=1$ for $1 \leq i \leq m$, and $f(e)=0$ for all other edges. Conversely, an integral maximum flow (which exists by Corollary 4.3.12) of value m determines a matching of size m by taking the edges from X to Y with flow 1 .
By the Max-Flow Min-Cut Theorem, the maximum value of a flow equals the minimum capacity of a source/sink cut. Let $[S, T]$ be a minimum source/sink cut of D. We will produce a vertex cover of G with at most $\operatorname{cap}(S, T)$ vertices. This will prove that $\beta(G) \leq$ $\operatorname{cap}(S, T)=\alpha^{\prime}(G)$.
Define the sets

$$
\begin{aligned}
& A=X \cap T \\
& B=Y \cap S \\
& C=\{y \in Y: y \text { is the head of an edge in }[S, T]\},
\end{aligned}
$$

and let $U=A \cup B \cup C$. It remains to show that U is a vertex cover of G, and that $|U| \leq \operatorname{cap}(S, T)=|[S, T]|$.
All the edges of G either have an endpoint in A or B, or they go between $X \cap S$ and $Y \cap T$, in which case they have an endpoint in C. This shows that U is a vertex cover of G.

Finally, to show that $|U| \leq|[S, T]|$, we give an injection from U to $[S, T]$ as follows: to each $v \in A$, we associate the edge $s v \in[S, T]$, to each $v \in B$, we associate the edge $v t \in[S, T]$, to each $v \in C$, we associate an edge in $[S, T]$ with head v.

