
Math 38. Graph Theory.

Solutions to Homework 7.

4.1.10. By Theorem 4.1.11, we must have κ(G) = κ′(G) = 1. Thus, G has a cut-edge, say uv. Let H
be the component of G − e that contains u. Since G is 3-regular, u has two more neighbors
(other than v), say x and y. Since d(x) = 3, H must have at least 4 vertices, namely x and
its three neighbors.

Let m ≥ 4 be the number of vertices of H, and let e(H) be its number of edges. By the
degree-sum formula, 2e(H) = 3m− 1, since all vertices of H other than u have degree 3, and
u has degree 2 in H. This formula implies that m is odd, and so m ≥ 5. Additionally, if
m = 5, the two vertices in H other than u, x, y must be connected to each other and to x, y
in order to have degree 3.

The same argument applies to the component of G − e that contains v. Thus, G must have
at least 10 vertices.

Here is a 3-regular graph with 10 vertices having connectivity 1:

By the above argument, it is the smallest one.

4.1.11. The proof is almost the same as that of Theorem 4.1.11. Let S be a minimum vertex cut. The
fact that every v ∈ S must have at least a neighbor in each of H1 and H2 still holds. So does
the fact that v cannot have two neighbors in H1 and two neighbors in H2, since ∆(G) ≤ 3.
Thus, for each v ∈ S, if v has only one edge to H1, we delete it; else, v has only one edge to
H2, so we delete that one. This gives an edge cut of size |S| = κ(G).

4.1.15. The Petersen graph G is 3-regular. By Theorem 4.1.11, κ(G) = κ(G′). Thus, to show that G
is 3-connected, it suffices to show that κ′(G) ≥ 3, that is, G has no edge cut of size 2 or less.
Clearly, G has no cut-edge. Suppose for contradiction that it has an edge cut [S, S] of size 2.
Then, by Prop 4.1.12,

2 =
∣∣[S, S]∣∣ = ∑

v∈S
d(v)− 2e(G[S]) = 3|S| − 2e(G[S]).

In particular, this implies that |S| is even. Also, by switching S with S if necessary, we can
assume without loss of generality that |S| ≤ |S| = 10− |S|, so |S| ≤ 5.

If |S| = 2, then the above formula would imply e(G[S]) = 2, so G would have a multiple edge,
which we know is not true. So, the only case left is |S| = 4, which implies e(G[S]) = 5. This
means that G[S] is the complete graph K4 (which has 6 edges) minus an edge. But then G[S]
would have a triangle, which contradicts the fact that the Petersen graph has no triangles (as
a triangle would require three pairwise-disjoint 2-element subsets of [5]).



4.2.1. We know that κ(u, v) ≤ 3, because deleting the vertices x, y, z (see picture) separates u from
v. On the other hand, κ(u, v) ≥ λ(u, v) ≥ 3, because there are 3 pairwise internally disjoint
u, v-paths, drawn in red. We conclude that κ(u, v) = 3.
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We know that κ′(u, v) ≤ 5, because deleting the edges e1, e2, e3, e4, e5 (see picture) disconnects
u from v. On the other hand, κ′(u, v) ≥ λ′(u, v) ≥ 5, because there are 5 pairwise edge-disjoint
u, v-paths, drawn in red and blue. We conclude that κ′(u, v) = 5.
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4.2.4. This is false. Here is a counterexample. The graph below is 2-connected, and P = uabv is a
u, v-path, but there is no u, v-path Q internally disjoint from P .
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4.3.2. Using the Ford-Fulkerson Algorithm, we get the flow f drawn below:
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Its value is val(f) = 17. Additionally, it is a maximum flow because, letting S be the red
vertices, tha capacity of the resulting source/sink cut is cap(S, S) = 3 + 4 + 5 + 2 + 3 = 17,
which agrees with the value of the flow f .

4.3.10. For every graph G, the inequality α′(G) ≤ β(G) holds because a vertex can’t cover two edges
of a matching. Now let G be an X,Y -bipartite graph. We will prove that α′(G) ≥ β(G).

Let D be the network whose nodes are V (G) ∪ {s, t}, and whose edges are
s → x for each x ∈ X,

x → y for each x ∈ X, y ∈ Y such that xy ∈ E(G),

y → t for each y ∈ Y.

All the edges have capacity 1.

First, let us show that α′(G), which is the maximum size of a matching in G, equals the
maximum value of a flow in D. This is because a matching M with m edges, say xiyi ∈ M for
1 ≤ i ≤ m (where xi ∈ X and yi ∈ Y ), determines a flow f of value m by letting f(sxi) = 1,
f(xiyi) = 1 and f(yit) = 1 for 1 ≤ i ≤ m, and f(e) = 0 for all other edges. Conversely, an
integral maximum flow (which exists by Corollary 4.3.12) of value m determines a matching
of size m by taking the edges from X to Y with flow 1.

By the Max-Flow Min-Cut Theorem, the maximum value of a flow equals the minimum
capacity of a source/sink cut. Let [S, T ] be a minimum source/sink cut of D. We will
produce a vertex cover of G with at most cap(S, T ) vertices. This will prove that β(G) ≤
cap(S, T ) = α′(G).

Define the sets

A = X ∩ T,

B = Y ∩ S,

C = {y ∈ Y : y is the head of an edge in [S, T ]},

and let U = A ∪ B ∪ C. It remains to show that U is a vertex cover of G, and that
|U | ≤ cap(S, T ) = |[S, T ]|.
All the edges of G either have an endpoint in A or B, or they go between X ∩ S and Y ∩ T ,
in which case they have an endpoint in C. This shows that U is a vertex cover of G.
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Finally, to show that |U | ≤ |[S, T ]|, we give an injection from U to [S, T ] as follows:
to each v ∈ A, we associate the edge sv ∈ [S, T ],
to each v ∈ B, we associate the edge vt ∈ [S, T ],
to each v ∈ C, we associate an edge in [S, T ] with head v.
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