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Math 38. Graph Theory.

Solutions to Homework 7.

By Theorem 4.1.11, we must have x(G) = x/(G) = 1. Thus, G has a cut-edge, say uv. Let H
be the component of G — e that contains w. Since G is 3-regular, u has two more neighbors
(other than v), say x and y. Since d(x) = 3, H must have at least 4 vertices, namely z and
its three neighbors.

Let m > 4 be the number of vertices of H, and let e(H) be its number of edges. By the
degree-sum formula, 2¢(H) = 3m — 1, since all vertices of H other than u have degree 3, and
u has degree 2 in H. This formula implies that m is odd, and so m > 5. Additionally, if
m = 5, the two vertices in H other than u, z,y must be connected to each other and to x,y
in order to have degree 3.

The same argument applies to the component of G — e that contains v. Thus, G must have
at least 10 vertices.

Here is a 3-regular graph with 10 vertices having connectivity 1:

By the above argument, it is the smallest one.

The proof is almost the same as that of Theorem 4.1.11. Let S be a minimum vertex cut. The
fact that every v € S must have at least a neighbor in each of Hy and H» still holds. So does
the fact that v cannot have two neighbors in H; and two neighbors in Hag, since A(G) < 3.
Thus, for each v € S, if v has only one edge to Hy, we delete it; else, v has only one edge to
Hj, so we delete that one. This gives an edge cut of size |S| = k(G).

The Petersen graph G is 3-regular. By Theorem 4.1.11, x(G) = k(G’). Thus, to show that G
is 3-connected, it suffices to show that x'(G) > 3, that is, G has no edge cut of size 2 or less.

Clearly, G has no cut-edge. Suppose for contradiction that it has an edge cut [S, S] of size 2.
Then, by Prop 4.1.12,

2=[S,5]] = d(v) - 2¢(G[S]) = 3|S| — 2¢(G[S)).
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In particular, this implies that |S| is even. Also, by switching S with S if necessary, we can
assume without loss of generality that |S| < |S| =10 — S|, so |S| < 5.

If |S| = 2, then the above formula would imply e(G[S]) = 2, so G would have a multiple edge,
which we know is not true. So, the only case left is |S| = 4, which implies e(G[S]) = 5. This
means that G[S] is the complete graph K4 (which has 6 edges) minus an edge. But then G[5]
would have a triangle, which contradicts the fact that the Petersen graph has no triangles (as
a triangle would require three pairwise-disjoint 2-element subsets of [5]).



4.2.1. We know that x(u,v) < 3, because deleting the vertices z,y, z (see picture) separates u from
v. On the other hand, k(u,v) > A(u,v) > 3, because there are 3 pairwise internally disjoint
u, v-paths, drawn in red. We conclude that x(u,v) = 3.
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We know that «'(u,v) < 5, because deleting the edges ey, e, 3, e4, €5 (see picture) disconnects
u from v. On the other hand, £'(u,v) > N (u,v) > 5, because there are 5 pairwise edge-disjoint
u, v-paths, drawn in red and blue. We conclude that «'(u,v) = 5.

4.2.4. This is false. Here is a counterexample. The graph below is 2-connected, and P = uabv is a
u, v-path, but there is no u, v-path @ internally disjoint from P.
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4.3.2. Using the Ford-Fulkerson Algorithm, we get the flow f drawn below:



4.3.10.

Its value is val(f) = 17. Additionally, it is a maximum flow because, letting S be the red
vertices, tha capacity of the resulting source/sink cut is cap(S,S) =3 +4+5+2+3 = 17,
which agrees with the value of the flow f.

For every graph G, the inequality o/ (G) < B(G) holds because a vertex can’t cover two edges
of a matching. Now let G be an X, Y-bipartite graph. We will prove that o/(G) > B(G).

Let D be the network whose nodes are V(G) U {s,t}, and whose edges are

s = a for each x € X,
x —y foreach z € X,y € Y such that zy € E(G),
y—t foreachyecY.

All the edges have capacity 1.

First, let us show that o/(G), which is the maximum size of a matching in G, equals the
maximum value of a flow in D. This is because a matching M with m edges, say x;y; € M for
1 <i<m (where z; € X and y; € V), determines a flow f of value m by letting f(sz;) =1,
flxiy;)) = 1 and f(y;t) = 1 for 1 < i < m, and f(e) = 0 for all other edges. Conversely, an
integral maximum flow (which exists by Corollary 4.3.12) of value m determines a matching
of size m by taking the edges from X to Y with flow 1.

By the Max-Flow Min-Cut Theorem, the maximum value of a flow equals the minimum
capacity of a source/sink cut. Let [S,7] be a minimum source/sink cut of D. We will
produce a vertex cover of G with at most cap(S,T') vertices. This will prove that 8(G) <
cap(S,T) = o/(G).

Define the sets

A=XnNT,

B=YnNS§,

C ={y €Y :yis the head of an edge in [S,T]},
and let U = AU B UC. It remains to show that U is a vertex cover of GG, and that
[U| < cap(S,T) = [[S, T]|.

All the edges of G either have an endpoint in A or B, or they go between X NS and Y N T,
in which case they have an endpoint in C. This shows that U is a vertex cover of G.



Finally, to show that |U| < |[S,T]|, we give an injection from U to [S,T] as follows:
to each v € A, we associate the edge sv € [S,T],

to each v € B, we associate the edge vt € [S,T],

to each v € C, we associate an edge in [S,T] with head v.



